Search Results

Now showing 1 - 10 of 17
  • Item
    Integrated Energy System Optimization Based on Standardized Matrix Modeling Method
    (Basel : MDPI, 2018-11-23) Li, Jingchao; Ying, Yulong; Lou, Xingdan; Fan, Juanjuan; Chen, Yunlongyu; Bi, Dongyuan
    Aiming at the optimization of an integrated energy system, a standardized matrix modeling method and optimization method for an integrated energy system is proposed. Firstly, from the perspective of system engineering, the energy flow between energy conversion devices is used as a state variable to deal with nonlinear problems caused by the introduction of scheduling factors, and a standardized matrix model of the integrated energy system is constructed. Secondly, based on the proposed model, the structural optimization (i.e., energy flow structure and equipment type), design optimization (i.e., equipment capacity and quantity), and operation optimization for the integrated energy system can be achieved. The simulation case studies have shown that the proposed integrated energy system standardized matrix modeling method and optimization method are both simple and efficient, and can be effectively used to decide the system components and their interconnections, and the technical characteristics and daily operating strategy of the system components.
  • Item
    CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland
    (Basel : MDPI, 2017) Piniewski, Mikołaj; Szcześniak, Mateusz; Kardel, Ignacy
    There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100) under two Representative Concentration Pathways (RCPs). The data set consists of three parts: (1) model inputs; (2) raw model outputs; (3) aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.
  • Item
    Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering
    (Basel : MDPI, 2016) Hardy, John G.; Torres-Rendon, Jose Guillermo; Leal-Egaña, Aldo; Walther, Andreas; Schlaad, Helmut; Cölfen, Helmut; Scheibel, Thomas
    Materials based on biodegradable polyesters, such as poly(butylene terephthalate) (PBT) or poly(butylene terephthalate-co-poly(alkylene glycol) terephthalate) (PBTAT), have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16)), that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.
  • Item
    Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance
    (Basel : MDPI, 2017-3-29) Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor
    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.
  • Item
    The Influence of Salt Anions on Heavy Metal Ion Adsorption on the Example of Nickel
    (Basel : MDPI, 2018) Mende, Mandy; Schwarz, Dana; Steinbach, Christine; Boldt, Regine; Schwarz, Simona
    The biodegradable polysaccharide chitosan possesses protonated and natural amino groups at medium pH values and has therefore been used as an adsorbing material for nickel salts in water treatment. Nickel is a problematic heavy metal ion which can cause various diseases and disorders in living organisms. Here, we show the influence of oxyanions (e.g., nitrate and sulfate) to the adsorption of nickel ions. Hence, simultaneously we are addressing the increasing global problem of nitrate and sulfate ion pollution in groundwater and surface water. A series of adsorption experiments was carried out in order to determine (i) the adsorption equilibrium, (ii) the adsorption capacity in dependence on the initial nickel ion concentration, and (iii) the influence of the anion presented in solution for the adsorption capacity. Surface morphology of chitosan flakes before and after the adsorption process has been studied with SEM-EDX analysis. The chitosan flakes exhibited promising adsorption capacities of 81.9 mg·g−1 and 21.2 mg·g−1 for nickel (sulfate) and nickel (nitrate), respectively. The calculated values of Gibbs free energy change ΔG0 confirm the higher adsorption of nickel ions in presence of sulfate ions. Hence, higher anion valence leads to a higher adsorption capacity.
  • Item
    Enhanced Interfacial Shear Strength and Critical Energy Release Rate in Single Glass Fiber-Crosslinked Polypropylene Model Microcomposites
    (Basel : MDPI, 2018) Gohs, Uwe; Mueller, Michael Thomas; Zschech, Carsten; Zhandarov, Serge
    Continuous glass fiber-reinforced polypropylene composites produced by using hybrid yarns show reduced fiber-to-matrix adhesion in comparison to their thermosetting counterparts. Their consolidation involves no curing, and the chemical reactions are limited to the glass fiber surface, the silane coupling agent, and the maleic anhydride-grafted polypropylene. This paper investigates the impact of electron beam crosslinkable toughened polypropylene, alkylene-functionalized single glass fibers, and electron-induced grafting and crosslinking on the local interfacial shear strength and critical energy release rate in single glass fiber polypropylene model microcomposites. A systematic comparison of non-, amino-, alkyl-, and alkylene-functionalized single fibers in virgin, crosslinkable toughened and electron beam crosslinked toughened polypropylene was done in order to study their influence on the local interfacial strength parameters. In comparison to amino-functionalized single glass fibers in polypropylene/maleic anhydride-grafted polypropylene, an enhanced local interfacial shear strength (+20%) and critical energy release rate (+80%) were observed for alkylene-functionalized single glass fibers in electron beam crosslinked toughened polypropylene.
  • Item
    Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS)
    (Basel : MDPI, 2017) Sobierajska, Ewelina; Konopka, Malgorzata; Janaszewska, Anna; Piorecka, Kinga; Blauz, Andrzej; Klajnert-Maculewicz, Barbara; Stanczyk, Maciej; Stanczyk, Wlodzimierz A.
    Polyhedral oligomeric silsesquioxane (POSS), bearing eight 3-chloroammoniumpropyl substituents, was studied as a potential nanocarrier in co-delivery systems with doxorubicin (DOX). The toxicity of doxorubicin and POSS:DOX complexes at four different molar ratios (1:1; 1:2, 1:4, 1:8) towards microvascular endothelial cells (HMEC-1), breast cancer cells (MCF-7), and human cervical cancer endothelial cells (HeLa) was determined. The rate of penetration of the components into the cells, their cellular localization and the hydrodynamic diameter of the complexes was also determined. A cytotoxicity profile of POSS:DOX complexes indicated that the POSS:DOX system at the molar ratio of 1:8 was more effective than free DOX. Confocal images showed that DOX co-delivery with POSS allowed for more effective penetration of doxorubicin through the cell membrane. Taking all the results into account, it can be claimed that the polyhedral oligomeric silsesquioxane (T8-POSS) is a promising, complex nanocarrier for doxorubicin delivery.
  • Item
    Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode
    (Basel : MDPI, 2018) Alvarado Chavarin, Carlos; Strobel, Carsten; Kitzmann, Julia; Di Bartolomeo, Antonio; Lukosius, Mindaugas; Albert, Matthias; Bartha, Johann Wolfgang; Wenger, Christian
    Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μS was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.
  • Item
    Further Enhancement of Mechanical Properties of Conducting Rubber Composites Based on Multiwalled Carbon Nanotubes and Nitrile Rubber by Solvent Treatment
    (Basel : MDPI, 2018) Keinänen, Pasi; Das, Amit; Vuorinen, Jyrki
    Post-treatment removal of dispersion agents from carbon nanotube/rubber composites can greatly enhance the mechanical properties by increasing the filler–matrix interaction. In this study, multiwall carbon nanotubes (MWNT) were dispersed in water by sonication and nonionic surfactant, octyl-phenol-ethoxylate was used as a dispersion agent. The dispersed MWNTs were incorporated in thermo-reactive acrylonitrile butadiene rubber (NBR) latex and nanocomposite films were prepared by solution casting. As a post-treatment, the surfactant was removed with acetone and films were dried in air. Dispersion quality of the colloid before casting was determined, and mechanical, electrical and thermal properties of the composites before and after the acetone post-treatment were studied. It was found that removal of dispersion agent increased the storage modulus of films between 160–300% in all samples. Relative enhancement was greater in samples with better dispersion quality, whereas thermal conductivity changed more in samples with smaller dispersion quality values. Electrical properties were not notably affected.
  • Item
    Cononsolvency Transition of Polymer Brushes: A Combined Experimental and Theoretical Study
    (Basel : MDPI, 2018) Yong, Huaisong; Rauch, Sebastian; Eichhorn, Klaus-Jochen; Uhlmann, Petra; Fery, Andreas; Sommer, Jens-Uwe
    In this study, the cononsolvency transition of poly(N-isopropylacrylamide) (PNiPAAm) brushes in aqueous ethanol mixtures was studied by using Vis-spectroscopic ellipsometry (SE) discussed in conjunction with the adsorption-attraction model. We proved that the cononsolvency transition of PNiPAAm brushes showed features of a volume phase transition, such as a sharp collapse, reaching a maximum decrease in thickness for a very narrow ethanol volume composition range of 15% to 17%. These observations are in agreement with the recently published preferential adsorption model of the cononsolvency effect.