Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Growth of PdCoO2 films with controlled termination by molecular-beam epitaxy and determination of their electronic structure by angle-resolved photoemission spectroscopy

2022, Song, Qi, Sun, Jiaxin, Parzyck, Christopher T., Miao, Ludi, Xu, Qing, Hensling, Felix V. E., Barone, Matthew R., Hu, Cheng, Kim, Jinkwon, Faeth, Brendan D., Paik, Hanjong, King, Phil D. C., Shen, Kyle M., Schlom, Darrell G.

Utilizing the powerful combination of molecular-beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES), we produce and study the effect of different terminating layers on the electronic structure of the metallic delafossite PdCoO2. Attempts to introduce unpaired electrons and synthesize new antiferromagnetic metals akin to the isostructural compound PdCrO2 have been made by replacing cobalt with iron in PdCoO2 films grown by MBE. Using ARPES, we observe similar bulk bands in these PdCoO2 films with Pd-, CoO2-, and FeO2-termination. Nevertheless, Pd- and CoO2-terminated films show a reduced intensity of surface states. Additionally, we are able to epitaxially stabilize PdFexCo1-xO2 films that show an anomaly in the derivative of the electrical resistance with respect to temperature at 20 K, but do not display pronounced magnetic order.

Loading...
Thumbnail Image
Item

Cobalt as a promising dopant for producing semi-insulating β -Ga2O3crystals: Charge state transition levels from experiment and theory

2022, Seyidov, Palvan, Varley, Joel B., Galazka, Zbigniew, Chou, Ta-Shun, Popp, Andreas, Fiedler, Andreas, Irmscher, Klaus

Optical absorption and photoconductivity measurements of Co-doped β-Ga2O3 crystals reveal the photon energies of optically excited charge transfer between the Co related deep levels and the conduction or valence band. The corresponding photoionization cross sections are fitted by a phenomenological model considering electron-phonon coupling. The obtained fitting parameters: thermal ionization (zero-phonon transition) energy, Franck-Condon shift, and effective phonon energy are compared with corresponding values predicted by first principle calculations based on density functional theory. A (+/0) donor level ∼0.85 eV above the valence band maximum and a (0/-) acceptor level ∼2.1 eV below the conduction band minimum are consistently derived. Temperature-dependent electrical resistivity measurement at elevated temperatures (up to 1000 K) yields a thermal activation energy of 2.1 ± 0.1 eV, consistent with the position of the Co acceptor level. Furthermore, the results show that Co doping is promising for producing semi-insulating β-Ga2O3 crystals.

Loading...
Thumbnail Image
Item

Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics

2018, Ringleb, Franziska, Andree, Stefan, Heidmann, Berit, Bonse, Jörn, Eylers, Katharina, Ernst, Owen, Boeck, Torsten, Schmid, Martina, Krüger, Jörg

Micro-concentrator solar cells offer an attractive way to further enhance the efficiency of planar-cell technologies while saving absorber material. Here, two laser-based bottom-up processes for the fabrication of regular arrays of CuInSe2 and Cu(In,Ga)Se2 microabsorber islands are presented, namely one approach based on nucleation and one based on laser-induced forward transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated illumination.

Loading...
Thumbnail Image
Item

Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy

2017, Paik, Hanjong, Chen, Zhen, Lochocki, Edward, Seidner H., Ariel, Verma, Amit, Tanen, Nicholas, Park, Jisung, Uchida, Masaki, Shang, ShunLi, Zhou, Bi-Cheng, Brützam, Mario, Uecker, Reinhard, Liu, Zi-Kui, Jena, Debdeep, Shen, Kyle M., Muller, David A., Schlom, Darrell G.

Epitaxial La-doped BaSnO3 films were grown in an adsorption-controlled regime by molecular-beam epitaxy, where the excess volatile SnOx desorbs from the film surface. A film grown on a (001) DyScO3 substrate exhibited a mobility of 183 cm2 V-1 s-1 at room temperature and 400 cm2 V-1 s-1 at 10 K despite the high concentration (1.2 × 1011 cm-2) of threading dislocations present. In comparison to other reports, we observe a much lower concentration of (BaO)2 Ruddlesden-Popper crystallographic shear faults. This suggests that in addition to threading dislocations, other defects - possibly (BaO)2 crystallographic shear defects or point defects - significantly reduce the electron mobility.

Loading...
Thumbnail Image
Item

Lithium metal penetration induced by electrodeposition through solid electrolytes: Example in single-crystal Li6La3ZrTaO12 garnet

2018, Swamy, Tushar, Park, Richard, Sheldon, Brian W., Rettenwander, Daniel, Porz, Lukas, Berendts, Stefan, Uecker, Reinhard, Carter, W. Craig, Chiang, Yet-Ming

Solid electrolytes potentially enable rechargeable batteries with lithium metal anodes possessing higher energy densities than today’s lithium ion batteries. To do so the solid electrolyte must suppress instabilities that lead to poor coulombic efficiency and short circuits. In this work, lithium electrodeposition was performed on single-crystal Li6La3ZrTaO12 garnets to investigate factors governing lithium penetration through brittle electrolytes. In single crystals, grain boundaries are excluded as paths for lithium metal propagation. Vickers microindentation was used to introduce surface flaws of known size. However, operando optical microscopy revealed that lithium metal penetration propagates preferentially from a different, second class of flaws. At the perimeter of surface current collectors smaller in size than the lithium source electrode, an enhanced electrodeposition current density causes lithium filled cracks to initiate and grow to penetration, even when large Vickers defects are in proximity. Modeling the electric field distribution in the experimental cell revealed that a 5-fold enhancement in field occurs within 10 micrometers of the electrode edge and generates high local electrochemomechanical stress. This may determine the initiation sites for lithium propagation, overriding the presence of larger defects elsewhere.