Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice

2021, Clemen, Ramona, Freund, Eric, Mrochen, Daniel, Miebach, Lea, Schmidt, Anke, Rauch, Bernhard H., Lackmann, Jan‐Wilm, Martens, Ulrike, Wende, Kristian, Lalk, Michael, Delcea, Mihaela, Bröker, Barbara M., Bekeschus, Sander

Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.

Loading...
Thumbnail Image
Item

From patent to product? 50 years of low-pressure plasma sterilization

2018-10-18, Fiebrandt, Marcel, Lackmann, Jan-Wilm, Stapelmann, Katharina

The development of new sterilization methods is still a major topic. The need for new techniques arises from the development of new instruments and the usage of different materials. Especially in the case of plastics with their beneficial properties, for example, in the field of implantology, plasma sterilization is seen as a promising alternative to the standard methods. However, 50 years after the first patent and although low-pressure plasmas show excellent inactivation performance (>log 6 reduction), only one commercial system is available on the market for a distinct application. We will give a short review about known plasma sterilization mechanisms, the different plasma sterilization systems in use, analyze possible challenges for an industrial process and comment on possible solutions for a broader acceptance and utilization of low-pressure plasma sterilization.

Loading...
Thumbnail Image
Item

Physical aspects of dust–plasma interactions

2021, Pustylnik, M.Y., Pikalev, A.A., Zobnin, A.V., Semenov, I.L., Thomas, H.M., Petrov, O.F.

Low-pressure gas discharge plasmas are known to be strongly affected by the presence of small dust particles. This issue plays a role in the investigations of dust particle-forming plasmas, where the dust-induced instabilities may affect the properties of synthesized dust particles. Also, gas discharges with large amounts of microparticles are used in microgravity experiments, where strongly coupled subsystems of charged microparticles represent particle-resolved models of liquids and solids. In this field, deep understanding of dust–plasma interactions is required to construct the discharge configurations which would be able to model the desired generic condensed matter physics as well as, in the interpretation of experiments, to distinguish the plasma phenomena from the generic condensed matter physics phenomena. In this review, we address only physical aspects of dust–plasma interactions, that is, we always imply constant chemical composition of the plasma as well as constant size of the dust particles. We also restrict the review to two discharge types: dc discharge and capacitively coupled rf discharge. We describe the experimental methods used in the investigations of dust–plasma interactions and show the approaches to numerical modelling of the gas discharge plasmas with large amounts of dust. Starting from the basic physical principles governing the dust–plasma interactions, we discuss the state-of-the-art understanding of such complicated, discharge-type-specific phenomena as dust-induced stratification and transverse instability in a dc discharge or void formation and heartbeat instability in an rf discharge.

Loading...
Thumbnail Image
Item

Understanding Surface Modifications Induced via Argon Plasma Treatment through Secondary Electron Hyperspectral Imaging

2021, Farr, Nicholas, Thanarak, Jeerawan, Schäfer, Jan, Quade, Antje, Claeyssens, Frederik, Green, Nicola, Rodenburg, Cornelia

Understanding the effects that sterilization methods have on the surface of a biomaterial is a prerequisite for clinical deployment. Sterilization causes alterations in a material's surface chemistry and surface structures that can result in significant changes to its cellular response. Here we compare surfaces resulting from the application of the industry standard autoclave sterilisation to that of surfaces resulting from the use of low-pressure Argon glow discharge within a novel gas permeable packaging method in order to explore a potential new biomaterial sterilisation method. Material surfaces are assessed by applying secondary electron hyperspectral imaging (SEHI). SEHI is a novel low-voltage scanning electron microscopy based characterization technique that, in addition to capturing topographical images, also provides nanoscale resolution chemical maps by utilizing the energy distribution of emitted secondary electrons. Here, SEHI maps are exploited to assess the lateral distributions of diverse functional groups that are effected by the sterilization treatments. This information combined with a range of conventional surface analysis techniques and a cellular metabolic activity assay reveals persuasive reasons as to why low-pressure argon glow discharge should be considered for further optimization as a potential terminal sterilization method for PGS-M, a functionalized form of poly(glycerol sebacate) (PGS).

Loading...
Thumbnail Image
Item

Oral SARS-CoV-2 reduction by local treatment: A plasma technology application?

2022, von Woedtke, Thomas, Gabriel, Gülsah, Schaible, Ulrich E., Bekeschus, Sander

The SARS-CoV-2 pandemic reemphasized the importance of and need for efficient hygiene and disinfection measures. The coronavirus' efficient spread capitalizes on its airborne transmission routes via virus aerosol release from human oral and nasopharyngeal cavities. Besides the upper respiratory tract, efficient viral replication has been described in the epithelium of these two body cavities. To this end, the idea emerged to employ plasma technology to locally reduce mucosal viral loads as an additional measure to reduce patient infectivity. We here outline conceptual ideas of such treatment concepts within what is known in the antiviral actions of plasma treatment so far.

Loading...
Thumbnail Image
Item

Surface modification of the laser sintering standard powder polyamide 12 by plasma treatments

2018-6-7, Almansoori, Alaa, Masters, Robert, Abrams, Kerry, Schäfer, Jan, Gerling, Torsten, Majewski, Candice, Rodenburg, Cornelia

Polyamide 12 (PA12) powder was exposed for up to 3 h to low pressure air plasma treatment (LP-PT) and several minutes by two different atmospheric pressure plasma jets (APPJ) i.e., kINPen (K-APPJ) and Hairline (H-APPJ). The chemical and physical changes resulting from LP-PT were observed by a combination of Scanning Electron Microscopy (SEM), Hot Stage Microscopy (HSM) and Fourier transform infrared spectroscopy (FTIR), which demonstrated significant changes between the plasma treated and untreated PA12 powders. PA12 exposed to LP-PT showed an increase in wettability, was relatively porous, and possessed a higher density, which resulted from the surface functionalization and materials removal during the plasma exposure. However, it showed poor melt behavior under heating conditions typical for Laser Sintering. In contrast, brief PJ treatments demonstrated similar changes in porosity, but crucially, retained the favorable melt characteristics of PA12 powder.

Loading...
Thumbnail Image
Item

Self-Activation of Inorganic-Organic Hybrids Derived through Continuous Synthesis of Polyoxomolybdate and para-Phenylenediamine Enables Very High Lithium-Ion Storage Capacity

2023, Mohamed, Mana Abdirahman, Arnold, Stefanie, Janka, Oliver, Quade, Antje, Presser, Volker, Kickelbick, Guido

Inorganic-organic hybrid materials with redox-active components were prepared by an aqueous precipitation reaction of ammonium heptamolybdate (AHM) with para-phenylenediamine (PPD). A scalable and low-energy continuous wet chemical synthesis process, known as the microjet process, was used to prepare particles with large surface area in the submicrometer range with high purity and reproducibility on a large scale. Two different crystalline hybrid products were formed depending on the ratio of molybdate to organic ligand and pH. A ratio of para-phenylenediamine to ammonium heptamolybdate from 1 : 1 to 5 : 1 resulted in the compound [C6H10N2]2[Mo8O26] ⋅ 6 H2O, while higher PPD ratios from 9 : 1 to 30 : 1 yielded a composition of [C6H9N2]4[NH4]2[Mo7O24] ⋅ 3 H2O. The electrochemical behavior of the two products was tested in a battery cell environment. Only the second of the two hybrid materials showed an exceptionally high capacity of 1084 mAh g−1 at 100 mA g−1 after 150 cycles. The maximum capacity was reached after an induction phase, which can be explained by a combination of a conversion reaction with lithium to Li2MoO4 and an additional in situ polymerization of PPD. The final hybrid material is a promising material for lithium-ion battery (LIB) applications.

Loading...
Thumbnail Image
Item

Plasma Spraying of Kaolinite for Preparing Reactive Alumino-Silicate Glass Coatings

2022, Warr, Laurence N., Wolff, Thorben, Testrich, Holger, Grathoff, Georg, Kruth, Angela, Foest, Rüdiger

Thermally treated kaolinite is used to develop a range of alumino-silicate-based precursor materials but its behavior during plasma spraying has not been well-researched. In this study, two types of kaolinite samples were investigated in the form of low defect (KGa-1b) and high defect (KGa-2) varieties. The extreme temperatures of the plasma stream (up to 20 000 K) induced flash melting to produce a highly porous alumino-silicate glass without any crystallization of new Al−Si oxide minerals. The glass is comprised largely of intact or deformed spheres (average diameters 1.14–1.44 μm), which indicates rapid quenching and solidification before impact. The subspherical structures contain up to 40 % closed pore space caused by the rapid escape of water during melting. The low-density, porous alumino-silicate glass coatings with predicted specific surface areas (>0.95 m2/g) and hardnesses >1.8 GPa represent a potentially reactive but physically stable substrate ideal for further chemical functionalization.