Search Results

Now showing 1 - 10 of 56
  • Item
    Superelasticity of Plasma- and Synthetic Membranes Resulting from Coupling of Membrane Asymmetry, Curvature, and Lipid Sorting
    (Weinheim : Wiley-VCH, 2021) Steinkühler, Jan; Fonda, Piermarco; Bhatia, Tripta; Zhao, Ziliang; Leomil, Fernanda S. C.; Lipowsky, Reinhard; Dimova, Rumiana
    Biological cells are contained by a fluid lipid bilayer (plasma membrane, PM) that allows for large deformations, often exceeding 50% of the apparent initial PM area. Isolated lipids self-organize into membranes, but are prone to rupture at small (<2–4%) area strains, which limits progress for synthetic reconstitution of cellular features. Here, it is shown that by preserving PM structure and composition during isolation from cells, vesicles with cell-like elasticity can be obtained. It is found that these plasma membrane vesicles store significant area in the form of nanotubes in their lumen. These act as lipid reservoirs and are recruited by mechanical tension applied to the outer vesicle membrane. Both in experiment and theory, it is shown that a “superelastic” response emerges from the interplay of lipid domains and membrane curvature. This finding allows for bottom-up engineering of synthetic biomaterials that appear one magnitude softer and with threefold larger deformability than conventional lipid vesicles. These results open a path toward designing superelastic synthetic cells possessing the inherent mechanics of biological cells.
  • Item
    Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade
    (Weinheim : Wiley-VCH, 2023) von Haugwitz, Gerlis; Donnelly, Kian; Di Filippo, Mara; Breite, Daniel; Phippard, Max; Schulze, Agnes; Wei, Ren; Baumann, Marcus; Bornscheuer, Uwe T.
    Poly(vinyl alcohol) (PVA) is a water-soluble synthetic vinyl polymer with remarkable physical properties including thermostability and viscosity. Its biodegradability, however, is low even though a large amount of PVA is released into the environment. Established physical-chemical degradation methods for PVA have several disadvantages such as high price, low efficiency, and secondary pollution. Biodegradation of PVA by microorganisms is slow and frequently involves pyrroloquinoline quinone (PQQ)-dependent enzymes, making it expensive due to the costly cofactor and hence unattractive for industrial applications. In this study, we present a modified PVA film with improved properties as well as a PQQ-independent novel enzymatic cascade for the degradation of modified and unmodified PVA. The cascade consists of four steps catalyzed by three enzymes with in situ cofactor recycling technology making this cascade suitable for industrial applications.
  • Item
    On the Reactivity of Phosphaalumenes towards C−C Multiple Bonds
    (Weinheim : Wiley-VCH, 2023) Nees, Samuel; Wellnitz, Tim; Dankert, Fabian; Härterich, Marcel; Dotzauer, Simon; Feldt, Milica; Braunschweig, Holger; Hering‐Junghans, Christian
    Heterocycles containing group 13 and 15 elements such as borazines are an integral part of organic, biomedical and materials chemistry. Surprisingly, heterocycles containing P and Al are rare. We have now utilized phosphaalumenes in reactions with alkynes, alkenes and conjugated double bond systems. With sterically demanding alkynes 1,2-phosphaalumetes were afforded, whereas the reaction with HCCH or HCCSiMe3 gave 1,4-phosphaaluminabarrelenes. Using styrene saturated 1,2-phosphaalumates were formed, which reacted further with additional styrene to give different regio-isomers of 1,4-aluminaphosphorinanes. Using ethylene, a 1,4-aluminaphosphorinane is obtained, while with 1,3-butadiene a bicyclic system containing an aluminacyclopentane and a phosphirane unit was synthesized. The experimental work is supported by theoretical studies to shed light on the mechanism governing the formation of these heterocycles.
  • Item
    Enzyme Activity by Design: An Artificial Rhodium Hydroformylase for Linear Aldehydes
    (Weinheim : Wiley-VCH, 2017-9-13) Jarvis, Amanda G.; Obrecht, Lorenz; Deuss, Peter J.; Laan, Wouter; Gibson, Emma K.; Wells, Peter P.; Kamer, Paul C. J.
    Artificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition-metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site-specific phosphine bioconjugation methods and a lipid-binding protein (SCP-2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long-chain linear aldehydes under benign aqueous conditions. Overall, this study demonstrates that judiciously chosen protein-binding scaffolds can be adapted to obtain metalloenzymes that provide the reactivity of the introduced metal center combined with specifically intended product selectivity.
  • Item
    A Stable Manganese Pincer Catalyst for the Selective Dehydrogenation of Methanol
    (Weinheim : Wiley-VCH, 2016-12-2) Andérez-Fernández, María; Vogt, Lydia K.; Fischer, Steffen; Zhou, Wei; Jiao, Haijun; Garbe, Marcel; Elangovan, Saravanakumar; Junge, Kathrin; Junge, Henrik; Ludwig, Ralf; Beller, Matthias
    For the first time, structurally defined manganese pincer complexes catalyze the dehydrogenation of aqueous methanol to hydrogen and carbon dioxide, which is a transformation of interest with regard to the implementation of a hydrogen and methanol economy. Excellent long-term stability was demonstrated for the Mn-PNPiPr catalyst, as a turnover of more than 20 000 was reached. In addition to methanol, other important hydrogen carriers were also successfully dehydrogenated.
  • Item
    Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice
    (Weinheim : Wiley-VCH, 2021) Clemen, Ramona; Freund, Eric; Mrochen, Daniel; Miebach, Lea; Schmidt, Anke; Rauch, Bernhard H.; Lackmann, Jan‐Wilm; Martens, Ulrike; Wende, Kristian; Lalk, Michael; Delcea, Mihaela; Bröker, Barbara M.; Bekeschus, Sander
    Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
  • Item
    Lasing by Template-Assisted Self-Assembled Quantum Dots
    (Weinheim : Wiley-VCH, 2023) Aftenieva, Olha; Sudzius, Markas; Prudnikau, Anatol; Adnan, Mohammad; Sarkar, Swagato; Lesnyak, Vladimir; Leo, Karl; Fery, Andreas; König, Tobias A.F.
    Miniaturized laser sources with low threshold power are required for integrated photonic devices. Photostable core/shell nanocrystals are well suited as gain material and their laser properties can be exploited by direct patterning as distributed feedback (DFB) lasers. Here, the 2nd-order DFB resonators tuned to the photoluminescence wavelength of the QDs are used. Soft lithography based on template-assisted colloidal self-assembly enables pattern resolution in the subwavelength range. Combined with the directional Langmuir–Blodgett arrangement, control of the waveguide layer thickness is further achieved. It is shown that a lasing threshold of 5.5 mJ cm−2 is reached by a direct printing method, which can be further reduced by a factor of ten (0.6 mJ cm−2) at an optimal waveguide thickness. Moreover, it is discussed how one can adjust the DFB geometries to any working wavelength. This colloidal approach offers prospects for applications in bioimaging, biomedical sensing, anti-counterfeiting, or displays.
  • Item
    In Situ Fabrication of Freestanding Single-Atom-Thick 2D Metal/Metallene and 2D Metal/ Metallene Oxide Membranes: Recent Developments
    (Weinheim : Wiley-VCH, 2021) Ta, Huy Q.; Mendes, Rafael G.; Liu, Yu; Yang, Xiaoqin; Luo, Jingping; Bachmatiuk, Alicja; Gemming, Thomas; Zeng, Mengqi; Fu, Lei; Liu, Lijun; Rümmeli, Mark H.
    In recent years, two-dimensional (2D) materials have attracted a lot of research interest as they exhibit several fascinating properties. However, outside of 2D materials derived from van der Waals layered bulk materials only a few other such materials are realized, and it remains difficult to confirm their 2D freestanding structure. Despite that, many metals are predicted to exist as 2D systems. In this review, the authors summarize the recent progress made in the synthesis and characterization of these 2D metals, so called metallenes, and their oxide forms, metallene oxides as free standing 2D structures formed in situ through the use of transmission electron microscopy (TEM) and scanning TEM (STEM) to synthesize these materials. Two primary approaches for forming freestanding monoatomic metallic membranes are identified. In the first, graphene pores as a means to suspend the metallene or metallene oxide and in the second, electron-beam sputtering for the selective etching of metal alloys or thick complex initial materials is employed to obtain freestanding single-atom-thick 2D metal. The data show a growing number of 2D metals/metallenes and 2D metal/ metallene oxides having been confirmed and point to a bright future for further discoveries of these 2D materials.
  • Item
    In-Gel Direct Laser Writing for 3D-Designed Hydrogel Composites That Undergo Complex Self-Shaping
    (Weinheim : Wiley-VCH, 2017) Nishiguchi, Akihiro; Mourran, Ahmed; Zhang, Hang; Möller, Martin
    Self-shaping and actuating materials inspired by biological system have enormous potential for biosensor, microrobotics, and optics. However, the control of 3D-complex microactuation is still challenging due to the difficulty in design of nonuniform internal stress of micro/nanostructures. Here, we develop in-gel direct laser writing (in-gel DLW) procedure offering a high resolution inscription whereby the two materials, resin and hydrogel, are interpenetrated on a scale smaller than the wavelength of the light. The 3D position and mechanical properties of the inscribed structures could be tailored to a resolution better than 100 nm over a wide density range. These provide an unparalleled means of inscribing a freely suspended microstructures of a second material like a skeleton into the hydrogel body and also to direct isotropic volume changes to bending and distortion motions. In the combination with a thermosensitive hydrogel rather small temperature variations could actuate large amplitude motions. This generates complex modes of motion through the rational engineering of the stresses present in the multicomponent material. More sophisticated folding design would realize a multiple, programmable actuation of soft materials. This method inspired by biological system may offer the possibility for functional soft materials capable of biomimetic actuation and photonic crystal application.
  • Item
    Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity
    (Weinheim : Wiley-VCH, 2022) Borrmann, Fabian; Tsuda, Takuya; Guskova, Olga; Kiriy, Nataliya; Hoffmann, Cedric; Neusser, David; Ludwigs, Sabine; Lappan, Uwe; Simon, Frank; Geisler, Martin; Debnath, Bipasha; Krupskaya, Yulia; Al‐Hussein, Mahmoud; Kiriy, Anton
    The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.