Search Results

Now showing 1 - 10 of 57
  • Item
    Algebraische Zahlentheorie
    (Zürich : EMS Publ. House, 2018) Sujatha, Ramdorai; Urban, Eric; Venjakob, Otmar
    The origins of Algebraic Number Theory can be traced to over two centuries ago, wherein algebraic techniques are used to glean information about integers and rational numbers. It continues to be at the forefront of
  • Item
    Mini-Workshop: Asymptotic Invariants of Homogeneous Ideals
    (Zürich : EMS Publ. House, 2018) Cooper, Susan; Harbourne, Brian; Szpond, Justyna
    Recent decades have witnessed a shift in interest from isolated objects to families of objects and their limit behavior, both in algebraic geometry and in commutative algebra. A series of various invariants have been introduced in order to measure and capture asymptotic properties of various algebraic objects motivated by geometrical ideas. The major goals of this workshop were to refine these asymptotic ideas, to articulate unifying themes, and to identify the most promising new directions for study in the near future. We expect the ideas discussed and originated during this workshop to be poised to have a broad impact beyond the areas of algebraic geometry and commutative algebra.
  • Item
    Mini-Workshop: Algebraic, Geometric, and Combinatorial Methods in Frame Theory
    (Zürich : EMS Publ. House, 2018) Manon, Christopher; Mixon, Dustin G.; Vinzant, Cynthia
    Frames are collections of vectors in a Hilbert space which have reconstruction properties similar to orthonormal bases and applications in areas such as signal and image processing, quantum information theory, quantization, compressed sensing, and phase retrieval. Further desirable properties of frames for robustness in these applications coincide with structures that have appeared independently in other areas of mathematics, such as special matroids, Gel’Fand-Zetlin polytopes, and combinatorial designs. Within the past few years, the desire to understand these structures has led to many new fruitful interactions between frame theory and fields in pure mathematics, such as algebraic and symplectic geometry, discrete geometry, algebraic combinatorics, combinatorial design theory, and algebraic number theory. These connections have led to the solutions of several open problems and are ripe for further exploration. The central goal of our mini-workshop was to attack open problems that were amenable to an interdisciplinary approach combining certain subfields of frame theory, geometry, and combinatorics.
  • Item
    Mini-Workshop: Chromatic Phenomena and Duality in Homotopy Theory and Representation Theory
    (Zürich : EMS Publ. House, 2018) Krause, Henning; Stojanoska, Vesna
    This mini-workshop focused on chromatic phenomena and duality as unifying themes in algebra, geometry, and topology. The overarching goal was to establish a fruitful exchange of ideas between experts from various areas, fostering the study of the local and global structure of the fundamental categories appearing in algebraic geometry, homotopy theory, and representation theory. The workshop started with introductory talks to bring researches from different backgrounds to the same page, and later highlighted recent progress in these areas with an emphasis on the interdisciplinary nature of the results and structures found. Moreover, new directions were explored in focused group work throughout the week, as well as in an evening discussion identifying promising long-term goals in the subject. Topics included support theories and their applications to the classification of localizing ideals in triangulated categories, equivariant and homotopical enhancements of important structural results, descent and Galois theory, numerous notions of duality, Picard and Brauer groups, as well as computational techniques.
  • Item
    Mini-Workshop: Gibbs Measures for Nonlinear Dispersive Equations
    (Zürich : EMS Publ. House, 2018) Schlein, Benjamin; Sohinger, Vedran
    In this mini-workshop we brought together leading experts working on the application of Gibbs measures to the study of nonlinear PDEs. This framework is a powerful tool in the probabilistic study of solutions to nonlinear dispersive PDEs, in many ways alternative or complementary to deterministic methods. Among the special topics discussed were the construction of the measures, applications to dynamics, as well as the microscopic derivation of Gibbs measures from many-body quantum mechanics.
  • Item
    Applied Harmonic Analysis and Data Processing
    (Zürich : EMS Publ. House, 2018) Kutyniok, Gitta; Rauhut, Holger; Strohmer, Thomas
    Massive data sets have their own architecture. Each data source has an inherent structure, which we should attempt to detect in order to utilize it for applications, such as denoising, clustering, anomaly detection, knowledge extraction, or classification. Harmonic analysis revolves around creating new structures for decomposition, rearrangement and reconstruction of operators and functions—in other words inventing and exploring new architectures for information and inference. Two previous very successful workshops on applied harmonic analysis and sparse approximation have taken place in 2012 and in 2015. This workshop was the an evolution and continuation of these workshops and intended to bring together world leading experts in applied harmonic analysis, data analysis, optimization, statistics, and machine learning to report on recent developments, and to foster new developments and collaborations.
  • Item
    Mini-Workshop: Arithmetic Geometry and Symmetries around Galois and Fundamental Groups
    (Zürich : EMS Publ. House, 2018) Dèbes, Pierre; Fried, Michael D.
    The geometric study of the absolute Galois group of the rational numbers has been a highly active research topic since the first milestones: Hilbert’s Irreducibility Theorem, Noether’s program, Riemann’s Existence Theorem. It gained special interest in the last decades with Grothendieck’s “Esquisse d’un programme”, his “Letter to Faltings” and Fried’s introduction of Hurwitz spaces. It grew on and thrived on a wide range of areas, e.g. formal algebraic geometry, Diophantine geometry, group theory. The recent years have seen the development and integration in algebraic geometry and Galois theory of new advanced techniques from algebraic stacks, ℓ-adic representations and homotopy theories. It was the goal of this mini-workshop, to bring together an international panel of young and senior experts to draw bridges towards these fields of research and to incorporate new methods, techniques and structures in the development of geometric Galois theory.
  • Item
    Mini-Workshop: Entropy, Information and Control
    (Zürich : EMS Publ. House, 2018) Downarowicz, Tomasz; Kawan, Christoph; Nair, Girish
    This mini-workshop was motivated by the emerging field of networked control, which combines concepts from the disciplines of control theory, information theory and dynamical systems. Many current approaches to networked control simplify one or more of these three aspects, for instance by assuming no dynamical disturbances, or noiseless communication channels, or linear dynamics. The aim of this meeting was to approach a common understanding of the relevant results and techniques from each discipline in order to study the major, multi-disciplinary problems in networked control.
  • Item
    Mini-Workshop: Deep Learning and Inverse Problems
    (Zürich : EMS Publ. House, 2018) de Hoop, Maarten; Maaß, Peter; Schönlieb, Carola
    Machine learning and in particular deep learning offer several data-driven methods to amend the typical shortcomings of purely analytical approaches. The mathematical research on these combined models is presently exploding on the experimental side but still lacking on the theoretical point of view. This workshop addresses the challenge of developing a solid mathematical theory for analyzing deep neural networks for inverse problems.
  • Item
    Design and Analysis of Infectious Disease Studies
    (Zürich : EMS Publ. House, 2018) Halloran, M. Elizabeth; O'Neill, Philip
    This was the fifth workshop on mathematical and statistical methods on the transmission of infectious diseases. Building on epidemiologic models which were the subject of earlier workshops, this workshop concentrated on disentangling who infected whom by analysing high-resolution genomic data of pathogens which were routinely collected during disease outbreaks. Following the trail of the small mutations which continuously occur in different places of the pathogens’ genomes, mathematical tools and computational algorithms were used to reconstruct transmission trees and contact networks.