Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Hydrophilic non-precious metal nitrogen-doped carbon electrocatalysts for enhanced efficiency in oxygen reduction reaction

2015, Hao, Guang-Ping, Sahraie, Nastaran Ranjbar, Zhang, Qiang, Krause, Simon, Oschatz, Martin, Bachmatiuk, Alicja, Strasser, Peter, Kaskel, Stefan

Exploring the role of surface hydrophilicity of non-precious metal N-doped carbon electrocatalysts in electrocatalysis is challenging. Herein we discover an ultra-hydrophilic non-precious carbon electrocatalyst, showing enhanced catalysis efficiency on both gravimetric and areal basis for oxygen reduction reaction due to a high dispersion of active centres.

Loading...
Thumbnail Image
Item

Trapping self-propelled micromotors with microfabricated chevron and heart-shaped chips

2014, Restrepo-Pérez, Laura, Soler, Lluís, Martínez-Cisneros, Cynthia S., Sanchez, Samuel, Schmidt, Oliver G.

We demonstrate that catalytic micromotors can be trapped in microfluidic chips containing chevron and heart-shaped structures. Despite the challenge presented by the reduced size of the traps, microfluidic chips with different trapping geometries can be fabricated via replica moulding. We prove that these microfluidic chips can capture micromotors without the need for any external mechanism to control their motion.

Loading...
Thumbnail Image
Item

Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system

2014, Restrepo-Pérez, Laura, Meyer, Anne K., Helbig, Linda, Sanchez, Samuel, Schmidt, Oliver G.

Sample pre-concentration is crucial to achieve high sensitivity and low detection limits in lab-on-a-chip devices. Here, we present a system in which self-propelled catalytic micromotors are biofunctionalized and trapped acting as an alternative concentrating mechanism. This system requires no external energy source, which facilitates integration and miniaturization.