Search Results

Now showing 1 - 10 of 619
  • Item
    Polymeric monolithic materials: Syntheses, properties, functionalization and applications
    (Amsterdam : Elsevier, 2007) Buchmeiser, M.R.
    The synthetic particularities for the synthesis of polymer-based monolithic materials are summarized. In this context, monoliths prepared via thermal-, UV- or electron-beam triggered free radical polymerization, controlled TEMPO-mediated radical polymerization, polyaddition, polycondensation as well as living ring-opening metathesis polymerization (ROMP) will be covered. Particular attention is devoted to the aspects of controlling pore sizes, pore volumes and pore size distributions as well as functionalization of these supports. Finally, selected, recent applications in separation science, (bio-) catalysis and chip technology will be summarized. © 2007 Elsevier Ltd. All rights reserved.
  • Item
    Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics
    (Göttingen : Copernicus GmbH, 2009) Kawa, S.R.; Stolarski, R.S.; Newman, P.A.; Douglass, A.R.; Rex, M.; Hofmann, D.J.; Santee, M.L.; Frieler, K.
    The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate) parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O 2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl 2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS) data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007) are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen emissions and climate. Further laboratory, theoretical, and possibly atmospheric studies are needed.
  • Item
    Particles as probes for complex plasmas in front of biased surfaces
    (College Park, MD : Institute of Physics Publishing, 2009) Basner, R.; Sigeneger, F.; Loffhagen, D.; Schubert, G.; Fehske, H.; Kersten, H.
    An interesting aspect in the research of complex (dusty) plasmas is the experimental study of the interaction of micro-particles with the surrounding plasma for diagnostic purposes. Local electric fields can be determined from the behaviour of particles in the plasma, e.g. particles may serve as electrostatic probes. Since in many cases of applications in plasma technology it is of great interest to describe the electric field conditions in front of floating or biased surfaces, the confinement and behaviour of test particles is studied in front of floating walls inserted into a plasma as well as in front of additionally biased surfaces. For the latter case, the behaviour of particles in front of an adaptive electrode, which allows for an efficient confinement and manipulation of the grains, has been experimentally studied in terms of the dependence on the discharge parameters and on different bias conditions of the electrode. The effect of the partially biased surface (dc and rf) on the charged micro-particles has been investigated by particle falling experiments. In addition to the experiments, we also investigate the particle behaviour numerically by molecular dynamics, in combination with a fluid and particle-in-cell description of the plasma. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Investigation of changes in crystalline and amorphous structure during deformation of nano-reinforced semi-crystalline polymers by space-resolved synchrotron saxs and waxs
    (Amsterdam : Elsevier, 2009) Schneider, K.; Schone, A.; Jun, T.-S.; Korsunsky, A.M.
    Complex structural changes occur in semi-crystalline polymers during deformation. In (nano-)filled systems the situation becomes even more complicated, since not only phase changes may take place, but also local (interfacial) failure between phases may occur. To help identify specific processes taking place within these systems, simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS) measurements were performed using synchrotron radiation during in situ deformation. Using a highly focused beam, spatially resolved local information can be extracted by scanning the beam across the deformed/damaged region within the sample. The characteristic changes in the different phases are presented and discussed. While the study of WAXS patterns gives insight into the orientation and dimensions of the crystallites, SAXS provides information about the mutual arrangement of phases and the interfacial failure phenomena. Based on the analysis of the results obtained in our experiments it will be shown that the first changes in the crystalline phase appear long before macroscopic yielding of the sample is reached, i.e. the onset of irreversible deformation takes place. In the post-yield regime radical changes are observed in both the long- and short-range structures. It is concluded that the presence of nano-fillers exerts a strong influence on the establishment of microcrystalline structure, and hence also on the deformation behaviour at the microscopic scale.
  • Item
    Feasibility of electrostatic microparticle propulsion
    (College Park, MD : Institute of Physics Publishing, 2008) Trottenberg, T.; Kersten, H.; Neumann, H.
    This paper discusses the feasibility of electrostatic space propulsion which uses microparticles as propellant. It is shown that particle charging in a plasma is not sufficient for electrostatic acceleration. Moreover, it appears technically difficult to extract charged particles out of a plasma for subsequent acceleration without them being discharged. Two novel thruster concepts are proposed. In the first one, particles with low secondary electron emission are charged using energetic electrons in the order of magnitude of 100eV. The second concept charges the particles by contact with needle electrodes at high electrostatic potential (∼20kV). Both methods allow the maximum possible charges on microparticles. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Synthesis of unsymmetrical bis(imidoyl)dichlorides of oxalic acid
    (Berlin : Walter de Gruyter, 2005) Helmholz, F.; Schroeder, R.; Langer, P.
    Unsymmetrical oxalic acid-bis(imidoyl)dichlorides were prepared from ethyl 2-chloro-2-oxoacetate in three steps.
  • Item
    Kinetic slow mode-type solitons
    (Göttingen : Copernicus GmbH, 2005) Baumgärtel, K.; Sauer, K.; Dubinin, E.
    One-dimensional hybrid code simulations are presented, carried out in order both to study solitary waves of the slow mode branch in an isotropic, collisionless, medium-β plasma (βi=0.25) and to test the fluid based soliton interpretation of Cluster observed strong magnetic depressions (Stasiewicz et al., 200; Stasiewicz, 2004) against kinetic theory. In the simulations, a variety of strongly oblique, large amplitude, solitons are seen, including solitons with Alfvenic polarization, similar to those predicted by the Hall-MHD theory, and robust, almost non-propagating, solitary structures of slow magnetosonic type with strong magnetic field depressions and perpendicular ion heating, which have no counterpart in fluid theory. The results support the soliton-based interpretation of the Cluster observations, but reveal substantial deficiencies of Hall-MHD theory in describing slow mode-type solitons in a plasma of moderate beta.
  • Item
    The Wunstorf Drilling Project: Coring a Global Stratigraphic Reference Section of the Oceanic Anoxic Event 2
    (Sapporo : IODP, 2007) Erbacher, Jochen; Mutterlose, JÅ‘rg; Wilmsen, Markus; Wonik, Thomas
    [No abstract available]
  • Item
    A hindcast simulation of Arctic and Antarctic sea ice variability, 1955-2001
    (Tromsø : Norwegian Polar Institute, 2003) Fichefet, T.; Goosse, H.; Morales Maqueda, M.A.
    A hindcast simulation of the Arctic and Antarctic sea ice variability during 1955-2001 has been performed with a global, coarse resolution ice-ocean model driven by the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis daily surface air temperatures and winds. Both the mean state and variability of the ice packs over the satellite observing period are reasonably well reproduced by the model. Over the 47-year period, the simulated ice area (defined as the total ice-covered oceanic area) in each hemisphere experiences large decadal variability together with a decreasing trend of ∼1% per decade. In the Southern Hemisphere, this trend is mostly caused by an abrupt retreat of the ice cover during the second half of the 1970s and the beginning of the 1980s. The modelled ice volume also exhibits pronounced decadal variability, especially in the Northern Hemisphere. Besides these fluctuations, we detected a downward trend in Arctic ice volume of 1.8% per decade and an upward trend in Antarctic ice volume of 1.5% per decade. However, caution must be exercised when interpreting these trends because of the shortness of the simulation and the strong decadal variations. Furthermore, sensitivity experiments have revealed that the trend in Antarctic ice volume is model-dependent.
  • Item
    A propagation-separation approach to estimate the autocorrelation in a time-series
    (Göttingen : Copernicus, 2008) Divine, D.V.; Polzehl, J.; Godtliebsen, F.
    The paper presents an approach to estimate parameters of a local stationary AR(1) time series model by maximization of a local likelihood function. The method is based on a propagation-separation procedure that leads to data dependent weights defining the local model. Using free propagation of weights under homogeneity, the method is capable of separating the time series into intervals of approximate local stationarity. Parameters in different regions will be significantly different. Therefore the method also serves as a test for a stationary AR(1) model. The performance of the method is illustrated by applications to both synthetic data and real time-series of reconstructed NAO and ENSO indices and GRIP stable isotopes.