Search Results

Now showing 1 - 10 of 43
  • Item
    Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: Evaluation of candidate approaches with MODIS observations
    (Katlenburg-Lindau : Copernicus, 2020) Werner, Frank; Deneke, Hartwig
    This study presents and evaluates several candidate approaches for downscaling observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) in order to increase the horizontal resolution of subsequent cloud optical thickness (τ) and effective droplet radius (reff) retrievals from the native ≈ 3km×3km spatial resolution of the narrowband channels to ≈ 1km×1km. These methods make use of SEVIRI's coincident broadband high-resolution visible (HRV) channel. For four example cloud fields, the reliability of each downscaling algorithm is evaluated by means of collocated 1km×1km MODIS radiances, which are reprojected to the horizontal grid of the HRV channel and serve as reference for the evaluation. By using these radiances, smoothed with the modulation transfer function of the native SEVIRI channels, as retrieval input, the accuracy at the SEVIRI standard resolution can be evaluated and an objective comparison of the accuracy of the different downscaling algorithms can be made. For the example scenes considered in this study, it is shown that neglecting high-frequency variations below the SEVIRI standard resolution results in significant random absolute deviations of the retrieved τ and reff of up to ≈ 14 and ≈ 6μm, respectively, as well as biases. By error propagation, this also negatively impacts the reliability of the subsequent calculation of liquid water path (WL) and cloud droplet number concentration (ND), which exhibit deviations of up to ≈ 89gm-2 and ≈ 177cm-3, respectively. For τ , these deviations can be almost completely mitigated by the use of the HRV channel as a physical constraint and by applying most of the presented downscaling schemes. Uncertainties in retrieved reff at the native SEVIRI resolution are smaller, and the improvements from downscaling the observations are less obvious than for τ. Nonetheless, the right choice of downscaling scheme yields noticeable improvements in the retrieved reff. Furthermore, the improved reliability in retrieved cloud products results in significantly reduced uncertainties in derived WL and ND. In particular, one downscaling approach provides clear improvements for all cloud products compared to those obtained from SEVIRI's standard resolution and is recommended for future downscaling endeavors. This work advances efforts to mitigate impacts of scale mismatches among channels of multiresolution instruments on cloud retrievals. © Author(s) 2020.
  • Item
    Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during spring-summer transition in May 2014
    (Katlenburg-Lindau : EGU, 2018) Herenz, Paul; Wex, Heike; Henning, Silvia; Kristensen, Thomas Bjerring; Rubach, Florian; Roth, Anja; Borrmann, Stephan; Bozem, Heiko; Schulz, Hannes; Stratmann, Frank
    Within the framework of the RACEPAC (Radiation-Aerosol-Cloud Experiment in the Arctic Circle) project, the Arctic aerosol, arriving at a ground-based station in Tuktoyaktuk (Mackenzie River delta area, Canada), was characterized during a period of 3 weeks in May 2014. Basic meteorological parameters and particle number size distributions (PNSDs) were observed and two distinct types of air masses were found. One type were typical Arctic haze air masses, termed accumulation-type air masses, characterized by a monomodal PNSD with a pronounced accumulation mode at sizes above 100 nm. These air masses were observed during a period when back trajectories indicate an air mass origin in the north-east of Canada. The other air mass type is characterized by a bimodal PNSD with a clear minimum around 90ĝ€†nm and with an Aitken mode consisting of freshly formed aerosol particles. Back trajectories indicate that these air masses, termed Aitken-type air masses, originated from the North Pacific. In addition, the application of the PSCF receptor model shows that air masses with their origin in active fire areas in central Canada and Siberia, in areas of industrial anthropogenic pollution (Norilsk and Prudhoe Bay Oil Field) and the north-west Pacific have enhanced total particle number concentrations (N CN). Generally, N CN ranged from 20 to 500 cmg'3, while cloud condensation nuclei (CCN) number concentrations were found to cover a range from less than 10 up to 250 cmg'3 for a supersaturation (SS) between 0.1 and 0.7 %. The hygroscopicity parameter of the CCN was determined to be 0.23 on average and variations in were largely attributed to measurement uncertainties.

    Furthermore, simultaneous PNSD measurements at the ground station and on the Polar 6 research aircraft were performed. We found a good agreement of ground-based PNSDs with those measured between 200 and 1200 m. During two of the four overflights, particle number concentrations at 3000 m were found to be up to 20 times higher than those measured below 2000 m; for one of these two flights, PNSDs measured above 2000 m showed a different shape than those measured at lower altitudes. This is indicative of long-range transport from lower latitudes into the Arctic that can advect aerosol from different regions in different heights.
  • Item
    Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events
    (Katlenburg-Lindau : Copernicus, 2018) Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George
    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 μm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.
  • Item
    Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China
    (Katlenburg-Lindau : EGU, 2018) Chen, Jie; Wu, Zhijun; Augustin-Bauditz, Stefanie; Grawe, Sarah; Hartmann, Markus; Pei, Xiangyu; Liu, Zirui; Ji, Dongsheng; Wex, Heike
    Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the atmospheric number concentration of INP (NINP) in the range from -6 to -25 °C in Beijing. No correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and either total particle number concentration or number concentrations for particles with diameters > 500 nm. Furthermore, there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined temperature range.
  • Item
    Multiphase MCM-CAPRAM modeling of the formation and processing of secondary aerosol constituents observed during the Mt. Tai summer campaign in 2014
    (Katlenburg-Lindau : EGU, 2020) Zhu, Yanhong; Tilgner, Andreas; Hoffmann, Erik Hans; Herrmann, Hartmut; Kawamura, Kimitaka; Yang, Lingxiao; Xue, Likun; Wang, Wenxing
    Despite the high abundance of secondary aerosols in the atmosphere, their formation mechanisms remain poorly understood. In this study, the Master Chemical Mechanism (MCM) and the Chemical Aqueous-Phase Radical Mechanism (CAPRAM) are used to investigate the multiphase formation and processing of secondary aerosol constituents during the advection of air masses towards the measurement site of Mt. Tai in northern China. Trajectories with and without chemical–cloud interaction are modeled. Modeled radical and non-radical concentrations demonstrate that the summit of Mt. Tai, with an altitude of ∼1.5 km a.m.s.l., is characterized by a suburban oxidants budget. The modeled maximum gas-phase concentrations of the OH radical are 3.2×106 and 3.5×106 molec. cm−3 in simulations with and without cloud passages in the air parcel, respectively. In contrast with previous studies at Mt. Tai, this study has modeled chemical formation processes of secondary aerosol constituents under day vs. night and cloud vs. non-cloud cases along the trajectories towards Mt. Tai in detail. The model studies show that sulfate is mainly produced in simulations where the air parcel is influenced by cloud chemistry. Under the simulated conditions, the aqueous reaction of HSO−3 with H2O2 is the major contributor to sulfate formation, contributing 67 % and 60 % in the simulations with cloud and non-cloud passages, respectively. The modeled nitrate formation is higher at nighttime than during daytime. The major pathway is aqueous-phase N2O5 hydrolysis, with a contribution of 72 % when cloud passages are considered and 70 % when they are not. Secondary organic aerosol (SOA) compounds, e.g., glyoxylic, oxalic, pyruvic and malonic acid, are found to be mostly produced from the aqueous oxidations of hydrated glyoxal, hydrated glyoxylic acid, nitro-2-oxopropanoate and hydrated 3-oxopropanoic acid, respectively. Sensitivity studies reveal that gaseous volatile organic compound (VOC) emissions have a huge impact on the concentrations of modeled secondary aerosol compounds. Increasing the VOC emissions by a factor of 2 leads to linearly increased concentrations of the corresponding SOA compounds. Studies using the relative incremental reactivity (RIR) method have identified isoprene, 1,3-butadiene and toluene as the key precursors for glyoxylic and oxalic acid, but only isoprene is found to be a key precursor for pyruvic acid. Additionally, the model investigations demonstrate that an increased aerosol partitioning of glyoxal can play an important role in the aqueous-phase formation of glyoxylic and oxalic acid. Overall, the present study is the first that provides more detailed insights in the formation pathways of secondary aerosol constituents at Mt. Tai and clearly emphasizes the importance of aqueous-phase chemical processes on the production of multifunctional carboxylic acids.
  • Item
    Optimizing the detection, ablation, and ion extraction efficiency of a single-particle laser ablation mass spectrometer for application in environments with low aerosol particle concentrations
    (Katlenburg-Lindau : Copernicus, 2020) Clemen, Hans-Christian; Schneider, Johannes; Klimach, Thomas; Helleis, Frank; Köllner, Franziska; Hünig, Andreas; Rubach, Florian; Mertes, Stephan; Wex, Heike; Stratmann, Frank; Welti, André; Kohl, Rebecca; Frank, Fabian; Borrmann, Stephan
    The aim of this study is to show how a newly developed aerodynamic lens system (ALS), a delayed ion extraction (DIE), and better electric shielding improve the efficiency of the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA). These improvements are applicable to single-particle laser ablation mass spectrometers in general. To characterize the modifications, extensive sizeresolved measurements with spherical polystyrene latex particles (PSL; 150-6000 nm) and cubic sodium chloride particles (NaCl; 400-1700 nm) were performed. Measurements at a fixed ALS position show an improved detectable particle size range of the new ALS compared to the previously used Liu-type ALS, especially for supermicron particles. At a lens pressure of 2.4 hPa, the new ALS achieves a PSL particle size range from 230 to 3240 nm with 50% detection efficiency and between 350 and 2000 nm with 95% detection efficiency. The particle beam divergence was determined by measuring the detection efficiency at variable ALS positions along the laser cross sections and found to be minimal for PSL at about 800 nm. Compared to measurements by singleparticle mass spectrometry (SPMS) instruments using Liutype ALSs, the minimum particle beam divergence is shifted towards larger particle sizes. However, there are no disadvantages compared to the Liu-type lenses for particle sizes down to 200 nm. Improvements achieved by using the DIE and an additional electric shielding could be evaluated by size-resolved measurements of the hit rate, which is the ratio of laser pulses yielding a detectable amount of ions to the total number of emitted laser pulses. In particular, the hit rate for multiply charged particles smaller than 500 nm is significantly improved by preventing an undesired deflection of these particles in the ion extraction field. Moreover, it was found that by using the DIE the ion yield of the ablation, ionization, and ion extraction process could be increased, resulting in up to 7 times higher signal intensities of the cation spectra. The enhanced ion yield results in a larger effective width of the ablation laser beam, which in turn leads to a hit rate of almost 100% for PSL particles in the size range from 350 to 2000 nm. Regarding cubic NaCl particles the modifications of the ALABAMA result in an up to 2 times increased detection efficiency and an up to 5 times increased hit rate. The need for such instrument modifications arises in particular for measurements of particles that are present in low number concentrations such as ice-nucleating particles (INPs) in general, but also aerosol particles at high altitudes or in pristine environments. Especially for these low particle number concentrations, improved efficiencies help to overcome the statistical limitations of single-particle mass spectrometer measurements. As an example, laboratory INP measurements carried out in this study show that the appli- cation of the DIE alone increases the number of INP mass spectra per time unit by a factor of 2 to 3 for the sampled substances. Overall, the combination of instrument modifications presented here resulted in an increased measurement efficiency of the ALABAMA for different particle types and particles shape as well as for highly charged particles. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern oceans
    (Katlenburg-Lindau : EGU, 2020) Welti, André; Bigg, Keith E.; DeMott, Paul J.; Gong, Xianda; Hartmann, Markus; Harvey, Mike; Henning, Silvia; Herenz, Paul; Hill, Thomas C.J.; Hornblow, Blake; Leck, Caroline; Löffler, Mareike; McCluskey, Christina S.; Rauker, Anne Marie; Schmale, Julia; Tatzelt, Christian; van Pinxteren, Manuela; Stratmann, Frank
    Ambient concentrations of ice-forming particles measured during ship expeditions are collected and summarised with the aim of determining the spatial distribution and variability in ice nuclei in oceanic regions. The presented data from literature and previously unpublished data from over 23 months of ship-based measurements stretch from the Arctic to the Southern Ocean and include a circumnavigation of Antarctica. In comparison to continental observations, ship-based measurements of ambient ice nuclei show 1 to 2 orders of magnitude lower mean concentrations. To quantify the geographical variability in oceanic areas, the concentration range of potential ice nuclei in different climate zones is analysed by meridionally dividing the expedition tracks into tropical, temperate and polar climate zones. We find that concentrations of ice nuclei in these meridional zones follow temperature spectra with similar slopes but vary in absolute concentration. Typically, the frequency with which specific concentrations of ice nuclei are observed at a certain temperature follows a log-normal distribution. A consequence of the log-normal distribution is that the mean concentration is higher than the most frequently measured concentration. Finally, the potential contribution of ship exhaust to the measured ice nuclei concentration on board research vessels is analysed as function of temperature. We find a sharp onset of the influence at approximately 36 C but none at warmer temperatures that could bias ship-based measurements. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
  • Item
    Influence of aerosol copper on HO2 uptake: A novel parameterized equation
    (Katlenburg-Lindau : EGU, 2020) Song, Huan; Chen, Xiaorui; Lu, Keding; Zou, Qi; Tan, Zhaofeng; Fuchs, Hendrik; Wiedensohler, Alfred; Moon, Daniel R.; Heard, Dwayne E.; Baeza-Romero, María-Teresa; Zheng, Mei; Wahner, Andreas; Kiendler-Scharr, Astrid; Zhang, Yuanhang
    Heterogeneous uptake of hydroperoxyl radicals (HO2) onto aerosols has been proposed to be a significant sink of HOx , hence impacting the atmospheric oxidation capacity. Accurate calculation of the HO2 uptake coefficient HO2 is key to quantifying the potential impact of this atmospheric process. Laboratory studies show that HO2 can vary by orders of magnitude due to changes in aerosol properties, especially aerosol soluble copper (Cu) concentration and aerosol liquid water content (ALWC). In this study we present a state-of-the-art model called MARK to simulate both gas- and aerosol-phase chemistry for the uptake of HO2 onto Cu-doped aerosols. Moreover, a novel parameterization of HO2 uptake was developed that considers changes in relative humidity (RH) and condensed-phase Cu ion concentrations and which is based on a model optimization using previously published and new laboratory data included in this work. This new parameterization will be applicable to wet aerosols, and it will complement current IUPAC recommendations. The new parameterization is as follows (the explanations for symbols are in the Appendix): (Formula presented) All parameters used in the paper are summarized in Table A1. Using this new equation, field data from a field campaign were used to evaluate the impact of the HO2 uptake onto aerosols on the ROx (=OH+HO2 CRO2) budget. Highly variable values for HO2 uptake were obtained for the North China Plain (median value <0.1). © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Annual variability of ice-nucleating particle concentrations at different Arctic locations
    (Göttingen : Copernicus GmbH, 2019) Wex, H.; Huang, L.; Zhang, W.; Hung, H.; Traversi, R.; Becagli, S.; Sheesley, R.J.; Moffett, C.E.; Barrett, T.E.; Bossi, R.; Skov, H.; Hünerbein, A.; Lubitz, J.; Löffler, M.; Linke, O.; Hartmann, M.; Herenz, P.; Stratmann, F.
    Number concentrations of ice-nucleating particles (NINP) in the Arctic were derived from ground-based filter samples. Examined samples had been collected in Alert (Nunavut, northern Canadian archipelago on Ellesmere Island), Utqiagvik, formerly known as Barrow (Alaska), Nyalesund (Svalbard), and at the Villum Research Station (VRS; northern Greenland). For the former two stations, examined filters span a full yearly cycle. For VRS, 10 weekly samples, mostly from different months of one year, were included. Samples from Ny-Alesund were collected during the months from March until September of one year. At all four stations, highest concentrations were found in the summer months from roughly June to September. For those stations with sufficient data coverage, an annual cycle can be seen. The spectra of NINP observed at the highest temperatures, i.e., those obtained for summer months, showed the presence of INPs that nucleate ice up to-5 °C. Although the nature of these highly ice-active INPs could not be determined in this study, it often has been described in the literature that ice activity observed at such high temperatures originates from the presence of ice-active material of biogenic origin. Spectra observed at the lowest temperatures, i.e., those derived for winter months, were on the lower end of the respective values from the literature on Arctic INPs or INPs from midlatitude continental sites, to which a comparison is presented herein. An analysis concerning the origin of INPs that were ice active at high temperatures was carried out using back trajectories and satellite information. Both terrestrial locations in the Arctic and the adjacent sea were found to be possible source areas for highly active INPs.
  • Item
    Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements
    (Katlenburg-Lindau : EGU, 2019) Marinou, Eleni; Tesche, Matthias; Nenes, Athanasios; Ansmann, Albert; Schrod, Jann; Mamali, Dimitra; Tsekeri, Alexandra; Pikridas, Michael; Baars, Holger; Engelmann, Ronny; Voudouri, Kalliopi-Artemis; Solomos, Stavros; Sciare, Jean; Groß, Silke; Ewald, Florian; Amiridis, Vassilis
    Aerosols that are efficient ice-nucleating particles (INPs) are crucial for the formation of cloud ice via heterogeneous nucleation in the atmosphere. The distribution of INPs on a large spatial scale and as a function of height determines their impact on clouds and climate. However, in situ measurements of INPs provide sparse coverage over space and time. A promising approach to address this gap is to retrieve INP concentration profiles by combining particle concentration profiles derived by lidar measurements with INP efficiency parameterizations for different freezing mechanisms (immersion freezing, deposition nucleation). Here, we assess the feasibility of this new method for both ground-based and spaceborne lidar measurements, using in situ observations collected with unmanned aerial vehicles (UAVs) and subsequently analyzed with the FRIDGE (FRankfurt Ice nucleation Deposition freezinG Experiment) INP counter from an experimental campaign at Cyprus in April 2016. Analyzing five case studies we calculated the cloud-relevant particle number concentrations using lidar measurements (n250,dry with an uncertainty of 20 % to 40 % and Sdry with an uncertainty of 30 % to 50 %), and we assessed the suitability of the different INP parameterizations with respect to the temperature range and the type of particles considered. Specifically, our analysis suggests that our calculations using the parameterization of Ullrich et al. (2017) (applicable for the temperature range −50 to −33 ∘C) agree within 1 order of magnitude with the in situ observations of nINP; thus, the parameterization of Ullrich et al. (2017) can efficiently address the deposition nucleation pathway in dust-dominated environments. Additionally, our calculations using the combination of the parameterizations of DeMott et al. (2015, 2010) (applicable for the temperature range −35 to −9 ∘C) agree within 2 orders of magnitude with the in situ observations of INP concentrations (nINP) and can thus efficiently address the immersion/condensation pathway of dust and nondust particles. The same conclusion is derived from the compilation of the parameterizations of DeMott et al. (2015) for dust and Ullrich et al. (2017) for soot.