Search Results

Now showing 1 - 2 of 2
  • Item
    MWCNT induced negative real permittivity in a copolyester of Bisphenol-A with terephthalic and isophthalic acids
    (Bristol : IOP Publ., 2020) Özdemir, Zeynep Güven; Daşdan, Dolunay Şakar; Kavak, Pelin; Pionteck, Jürgen; Pötschke, Petra; Voit, Brigitte; SüngüMısırlıoğlu, Banu
    In the present study, the negative real permittivity behavior of a copolyester of bisphenol-A with terephthalic acid and isophthalic acid (PAr) containing 1.5 to 7.5 wt% multi-walled carbon nanotubes (MWCNTs) have been investigated in detail. The structural and morphological analysis of the melt-mixed composites was performed by Fourier transform infrared spectroscopy using attenuated total reflection (FTIR-ATR), atomic force microscopy (AFM), X-ray diffraction (XRD), and light microscopy. The influences of the MWCNT filler on the AC impedance, complex permittivity, and AC conductivity of the PAr polymer matrix were investigated at different operating temperatures varied between 296 K and 373 K. The transition from a negative to positive real permittivity was observed at different crossover frequencies depending on the MWCNT content of the composites whereas pure PAr showed positive values at all frequencies. The negative real permittivity characteristic of the composites was discussed in the context of Drude model. © 2020 The Author(s). Published by IOP Publishing Ltd.
  • Item
    Modelling and Experimental Investigation of Hexagonal Nacre-Like Structure Stiffness
    (Basel : MDPI, 2020) Rouhana, Rami; Stommel, Markus
    A highly ordered, hexagonal, nacre-like composite stiffness is investigated using experiments, simulations, and analytical models. Polystyrene and polyurethane are selected as materials for the manufactured specimens using laser cutting and hand lamination. A simulation geometry is made by digital microscope measurements of the specimens, and a simulation is conducted using material data based on component material characterization. Available analytical models are compared to the experimental results, and a more accurate model is derived specifically for highly ordered hexagonal tablets with relatively large in-plane gaps. The influence of hexagonal width, cut width, and interface thickness are analyzed using the hexagonal nacre-like composite stiffness model. The proposed analytical model converges within 1% with the simulation and experimental results