Search Results

Now showing 1 - 10 of 540
  • Item
    Understanding Business Environments and Success Factors for Emerging Bioeconomy Enterprises through a Comprehensive Analytical Framework
    (Basel : MDPI, 2020) Adamseged, Muluken Elias; Grundmann, Philipp
    The development toward the bioeconomy requires, among others, generating and institutionalizing knowledge that contributes to technical and nontechnical inventions and innovations. Efforts to support innovation are often linked with the development of business models that facilitate the development in bioeconomy. However, the interdependences between the business models and their business environments are not sufficiently well understood in a way where misalignments that can obstruct the development can be dealt with adequately. Given this lacuna, this research aims to contribute to the development of a comprehensive analytical framework for better understanding the conditions of business environment as well as empirically apply the framework in an empirical study on cases of bioeconomy enterprises in Europe. In this paper, a comprehensive business environment framework is developed and applied for analyzing over 80 cases, thereby allowing for critical action arenas and crucial success factors to be identified. The findings are derived from a systematic application of the framework to relevant action arenas for business development: institutional development, technology and knowledge, consumers’ agency, market structure, funding, resource and infrastructure, and training and education. The results show that businesses in the bioeconomy, unlike other businesses, have to deal with more and very specific constraining legislative issues, infant and non-adapted technology and knowledge, as well as unclear values and perceptions of consumers. Due to this, businesses have to develop new forms of cooperation with different stakeholders. Successful businesses are characterized by the fact that they develop specific strategies, steering structures, and processes with a particular focus on learning and innovation to overcome misalignments between the business environment and their business models. Focusing efforts on learning and innovation in institutional development, technology and knowledge, consumers’ agency, and funding are especially promising as these turned out to be particularly critical and in particular need of institutional alignment for reducing different kinds of transaction costs in the development of bioeconomy.
  • Item
    How Clusters Create Shared Value in Rural Areas: An Examination of Six Case Studies
    (Basel : MDPI, 2021) Martinidis, George; Adamseged, Muluken Elias; Dyjakon, Arkadiusz; Fallas, Yannis; Foutri, Angeliki; Grundmann, Philipp; Hamann, Karen; Minta, Stanislaw; Ntavos, Nikolaos; Råberg, Tora; Russo, Silvia; Viaggi, Davide
    The main aim of this paper is to demonstrate that clusters can support the sustainable development of rural areas through the creation of shared value. This is done via the close exam-ination of six different cases of rural clusters in Greece, Italy, Germany, Poland, Denmark, and Sweden. Qualitative as well as quantitative data were taken from the clusters, which demonstrated that their main business approaches naturally coincided with the creation of economic, social, and environmental benefits for the local communities in which they operated. The case clusters were created in a top-down manner, aimed at boosting regional R&D activities and making the local economy more competitive and more sustainable. However, private initiative took over and al-lowed these clusters to flourish because meeting the regions’ economic, social, and environmental needs successfully coincided with the target of the clusters’ own development and profitability. The results show that clusters, with their potential for shared value creation, can constitute a powerful engine for the revitalisation and development of rural areas, addressing the significant challenges which they are currently facing.
  • Item
    Knowledge Transfer with Citizen Science: Luft-Leipzig Case Study
    (Basel : MDPI, 2021) Tõnisson, Liina; Voigtländer, Jens; Weger, Michael; Assmann, Denise; Käthner, Ralf; Heinold, Bernd; Macke, Andreas
    Community-based participatory research initiatives such as “hackAir”, “luftdaten.info”, “senseBox”, “CAPTOR”, “CurieuzeNeuzen Vlaanderen”, “communityAQ”, and “Healthy Air, Healthier Children” campaign among many others for mitigating short-lived climate pollutants (SLCPs) and improving air quality have reported progressive knowledge transfer results. These research initiatives provide the research community with the practical four-element state-of-the-art method for citizen science. For the preparation-, measurements-, data analysis-, and scientific support-elements that collectively present the novel knowledge transfer method, the Luft-Leipzig project results are presented. This research contributes to science by formulating a novel method for SLCP mitigation projects that employ citizen scientists. The Luft-Leipzig project results are presented to validate the four-element state-of-the-art method. The method is recommended for knowledge transfer purposes beyond the scope of mitigating short-lived climate pollutants (SLCPs) and improving air quality.
  • Item
    Development of Biorefineries in the Bioeconomy: A Fuzzy-Set Qualitative Comparative Analysis among European Countries
    (Basel : MDPI, 2021) Ding, Zhengqiu; Grundmann, Philipp
    This study aims to identify the configurational conditions that characterize the establish-ment of biorefineries in 20 European countries. After determining the conditions which support a bioeconomy transition, secondary data from national sources are used to represent their existing conditions within respective countries. Then, a fuzzy-set qualitative comparative analysis is em-ployed to compare and contrast the effect of varying combinations of the selected conditions on the development of biorefineries. The conditions chosen include coherent bioeconomy strategies, network intensity of regional bioclusters, intellectual capital, and natural resource availability. Our results reveal that the configuration of a coherent bioeconomy strategy, sizable public spending on R&D, abundant biomass supply, and a high level of network intensity is sufficient to explain the pro-nounced biorefineries development among some European countries. We recommend that countries with fragmented approaches review and redesign the policy and regulatory framework to create a holistic and consistent bioeconomy strategy, taking into account the configurations of conditions as an important prerequisite. In particular, factors such as the lack of best practice examples, the low level of public spending on research and development, the economic capacities for a skilled workforce in addition to the sustainable supply of raw materials should be addressed as focal points.
  • Item
    Effect of 1-Methyl Cyclopropane and Modified Atmosphere Packaging on the Storage of Okra (Abelmoschus esculentus L.) : Theory and Experiments
    (Basel : MDPI, 2020) Kanwal, Rabia; Ashraf, Hadeed; Sultan, Muhammad; Babu, Irrum; Yasmin, Zarina; Nadeem, Muhammad; Asghar, Muhammad; Shamshiri, Redmond R.; Ibrahim, Sobhy M.; Ahmad, Nisar; Imran, Muhammad A.; Zhou, Yuguang; Ahmad, Riaz
    Okra possesses a short shelf-life which limits its marketability, thereby, the present study investigates the individual and combined effect of 1-methylcyclopropene (1-MCP) and modified atmosphere packaging (MAP) on the postharvest storage life of okra. The treated/ untreated okra samples were stored at ambient (i.e., 27 °C) and low (i.e., 7 °C) temperatures for eight and 20 days, respectively. Results revealed that the 1-MCP and/or MAP treatment successfully inhibited fruit softening, reduction in mucilage viscosity, and color degradation (hue angle, ∆E, and BI) in the product resulting in a longer period of shelf-life. However, MAP with or without 1-MCP was more effective to reduce weight loss in okra stored at both ambient and cold storage conditions. Additionally, ascorbic acid and total antioxidants were also retained in 1-MCP with MAP during cold storage. The 1-MCP in combination with MAP effectively suppressed respiration rate and ethylene production for four days and eight days at 27 °C and 7 °C temperature conditions, respectively. According to the results, relatively less chilling injury stress also resulted when 1-MCP combined with MAP. The combined treatment of okra pods with 1-MCP and MAP maintained the visual quality of the product in terms of overall acceptability for four days at 20 °C and 20 days at 7 °C.
  • Item
    Noise Sources and Requirements for Confocal Raman Spectrometers in Biosensor Applications
    (Basel : MDPI, 2021) Jahn, Izabella J.; Grjasnow, Alexej; John, Henry; Weber, Karina; Popp, Jürgen; Hauswald, Walter
    Raman spectroscopy probes the biochemical composition of samples in a non-destructive, non-invasive and label-free fashion yielding specific information on a molecular level. Nevertheless, the Raman effect is very weak. The detection of all inelastically scattered photons with highest efficiency is therefore crucial as well as the identification of all noise sources present in the system. Here we provide a study for performance comparison and assessment of different spectrometers for confocal Raman spectroscopy in biosensor applications. A low-cost, home-built Raman spectrometer with a complementary metal-oxide-semiconductor (CMOS) camera, a middle price-class mini charge-coupled device (CCD) Raman spectrometer and a laboratory grade confocal Raman system with a deeply cooled CCD detector are compared. It is often overlooked that the sample itself is the most important “optical” component in a Raman spectrometer and its properties contribute most significantly to the signal-to-noise ratio. For this purpose, different representative samples: a crystalline silicon wafer, a polypropylene sample and E. coli bacteria were measured under similar conditions using the three confocal Raman spectrometers. We show that biosensor applications do not in every case profit from the most expensive equipment. Finally, a small Raman database of three different bacteria species is set up with the middle price-class mini CCD Raman spectrometer in order to demonstrate the potential of a compact setup for pathogen discrimination.
  • Item
    The Abundance of S-Process Elements: Temporal and Spatial Trends from Open Cluster Observations
    (Basel : MDPI, 2022) Magrini, Laura; Vázquez, Carlos Viscasillas; Casali, Giada; Baratella, Martina; D’Orazi, Valentina; Spina, Lorenzo; Randich, Sofia; Cristallo, Sergio; Vescovi, Diego
    Spectroscopic observations of stars belonging to open clusters, with well-determined ages and distances, are a unique tool for constraining stellar evolution, nucleosynthesis, mixing processes, and, ultimately, Galactic chemical evolution. Abundances of slow (s) process neutron capture elements in stars that retain their initial surface composition open a window into the processes that generated them. In particular, they give us information on their main site of production, i.e., the low-and intermediate-mass Asymptotic Giant Branch (AGB) stars. In the present work, we review some observational results obtained during the last decade that contributed to a better understanding of the AGB phase: the growth of s-process abundances at recent epochs, i.e., in the youngest stellar populations; the different relations between age and [s/Fe] in distinct regions of the disc; and finally the use of s-process abundances combined with those of α elements, [s/α], to estimate stellar ages. We revise some implications that these observations had both on stellar and Galactic evolution, and on our ability to infer stellar ages.
  • Item
    Operational Parameters for Sub-Nano Tesla Field Resolution of PHMR Sensors in Harsh Environments
    (Basel : MDPI, 2021) Jeon, Taehyeong; Das, Proloy Taran; Kim, Mijin; Jeon, Changyeop; Lim, Byeonghwa; Soldatov, Ivan; Kim, CheolGi
    The resolution of planar-Hall magnetoresistive (PHMR) sensors was investigated in the frequency range from 0.5 Hz to 200 Hz in terms of its sensitivity, average noise level, and detectivity. Analysis of the sensor sensitivity and voltage noise response was performed by varying operational parameters such as sensor geometrical architectures, sensor configurations, sensing currents, and temperature. All the measurements of PHMR sensors were carried out under both constant current (CC) and constant voltage (CV) modes. In the present study, Barkhausen noise was revealed in 1/f noise component and found less significant in the PHMR sensor configuration. Under measured noise spectral density at optimized conditions, the best magnetic field detectivity was achieved better than 550 pT/√Hz at 100 Hz and close to 1.1 nT/√Hz at 10 Hz for a tri-layer multi-ring PHMR sensor in an unshielded environment. Furthermore, the promising feasibility and possible routes for further improvement of the sensor resolution are discussed.
  • Item
    Measurement of Water Vapor Condensation on Apple Surfaces during Controlled Atmosphere Storage
    (Basel : MDPI, 2023) Linke, Manfred; Praeger, Ulrike; Neuwald, Daniel A.; Geyer, Martin
    Apples are stored at temperatures close to 0 °C and high relative humidity (up to 95%) under controlled atmosphere conditions. Under these conditions, the cyclic operation of the refrigeration machine and the associated temperature fluctuations can lead to localized undershoots of the dew point on fruit surfaces. The primary question for the present study was to prove that such condensation processes can be measured under practical conditions during apple storage. Using the example of a measuring point in the upper apple layer of a large bin in the supply air area, this evidence was provided. Using two independent measuring methods, a wetness sensor attached to the apple surface and determination of climatic conditions near the fruit, the phases of condensation, namely active condensation and evaporation, were measured over three weeks as a function of the operating time of the cooling system components (refrigeration machine, fans, defrosting regime). The system for measurement and continuous data acquisition in the case of an airtight CA-storage room is presented and the influence of the operation of the cooling system components in relation to condensation phenomena was evaluated. Depending on the set point specifications for ventilation and defrost control, condensed water was present on the apple surface between 33.4% and 100% of the duration of the varying cooling/re-warming cycles.
  • Item
    Investigating Solid and Liquid Desiccant Dehumidification Options for Room Air-Conditioning and Drying Applications
    (Basel : MDPI, 2020) Naik, B. Kiran; Joshi, Mullapudi; Muthukumar, Palanisamy; Sultan, Muhammad; Miyazaki, Takahiko; Shamshiri, Redmond R.; Ashraf, Hadeed
    This study reports on the investigation of the performance of single and two-stage liquid and solid desiccant dehumidification systems and two-stage combined liquid and solid desiccant dehumidification systems with reference to humid climates. The research focus is on a dehumidification system capacity of 25 kW designed for room air conditioning application using the thermal models reported in the literature. RD-type silica gel and LiCl are used as solid and liquid desiccant materials, respectively. In this study, the application of proposed system for deep drying application is also explored. Condensation rate and moisture removal efficiency are chosen as performance parameters for room air conditioning application, whereas air outlet temperature is chosen as performance parameter for deep drying application. Further, for a given range of operating parameters, influences of air inlet humidity ratio, flow rate, and inlet temperature on performance parameters of the systems are investigated. In humid climatic conditions, it has been observed that a two-stage liquid desiccant dehumidification system is more effective for room air conditioning application, and two-stage solid desiccant dehumidification system is more suitable for deep drying application in the temperature range of 50 to 70 °C, while single-stage solid desiccant and two-stage combined liquid and solid desiccant dehumidification systems are more effective for low temperature, i.e., 30 to 50 °C deep drying application.