Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Master Memory Function for Delay-Based Reservoir Computers With Single-Variable Dynamics

2022, Köster, Felix, Yanchuk, Serhiy, Lüdge, Kathy

We show that many delay-based reservoir computers considered in the literature can be characterized by a universal master memory function (MMF). Once computed for two independent parameters, this function provides linear memory capacity for any delay-based single-variable reservoir with small inputs. Moreover, we propose an analytical description of the MMF that enables its efficient and fast computation. Our approach can be applied not only to single-variable delay-based reservoirs governed by known dynamical rules, such as the Mackey–Glass or Stuart–Landau-like systems, but also to reservoirs whose dynamical model is not available.

Loading...
Thumbnail Image
Item

Neural partial differential equations for chaotic systems

2021, Gelbrecht, Maximilian, Boers, Niklas, Kurths, Jürgen

When predicting complex systems one typically relies on differential equation which can often be incomplete, missing unknown influences or higher order effects. By augmenting the equations with artificial neural networks we can compensate these deficiencies. We show that this can be used to predict paradigmatic, high-dimensional chaotic partial differential equations even when only short and incomplete datasets are available. The forecast horizon for these high dimensional systems is about an order of magnitude larger than the length of the training data.

Loading...
Thumbnail Image
Item

Nonlinear dynamical properties of frequency swept fiber-based semiconductor lasers

2021, Slepneva, Svetlana, Pimenov, Alexander

We investigate dynamics of semiconductor lasers with fiber-based unidirectional ring cavity that can be used as frequency swept sources. We identify key factors behind the reach dynamical behaviour of such lasers using state-of-the-art experimental and analytical methods. Experimentally, we study the laser in static, quasi-static and synchronisation regimes.We apply experimental methods such as optical heterodyne or electric field reconstruction in order to characterise these regimes or study the mechanisms of transition between them. Using a delay differential equation model, we demonstrate that the presence of chromatic dispersion can lead to destabilisation of the laser modes through modulational instability, which results in undesirable chaotic emission. We characterise the instability threshold both theoretically and experimentally, and demonstrate deterioration of the FDML regime near the threshold.