Search Results

Now showing 1 - 10 of 29
Loading...
Thumbnail Image
Item

Reciprocal space slicing: A time-efficient approach to femtosecond x-ray diffraction

2021, Zeuschner, S.P., Mattern, M., Pudell, J.-E., von Reppert, A., Rössle, M., Leitenberger, W., Schwarzkopf, J., Boschker, J.E., Herzog, M., Bargheer, M.

An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit ( 2θ ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.

Loading...
Thumbnail Image
Item

Direct measurement of Coulomb-laser coupling

2021, Azoury, Doron, Krüger, Michael, Bruner, Barry D., Smirnova, Olga, Dudovich, Nirit

The Coulomb interaction between a photoelectron and its parent ion plays an important role in a large range of light-matter interactions. In this paper we obtain a direct insight into the Coulomb interaction and resolve, for the first time, the phase accumulated by the laser-driven electron as it interacts with the Coulomb potential. Applying extreme-ultraviolet interferometry enables us to resolve this phase with attosecond precision over a large energy range. Our findings identify a strong laser-Coulomb coupling, going beyond the standard recollision picture within the strong-field framework. Transformation of the results to the time domain reveals Coulomb-induced delays of the electrons along their trajectories, which vary by tens of attoseconds with the laser field intensity.

Loading...
Thumbnail Image
Item

Multi-color imaging of magnetic Co/Pt heterostructures

2017, Willems, Felix, von Korff Schmising, Clemens, Weder, David, Günther, Christian M., Schneider, Michael, Pfau, Bastian, Meise, Sven, Guehrs, Erik, Geilhufe, Jan, Merhe, Alaa El Din, Jal, Emmanuelle, Vodungbo, Boris, Lüning, Jan, Mahieu, Benoit, Capotondi, Flavio, Pedersoli, Emanuele, Gauthier, David, Manfredda, Michele, Eisebitt, Stefan

We present an element specific and spatially resolved view of magnetic domainsin Co/Pt heterostructures in the extreme ultraviolet spectral range. Resonantsmall-angle scattering and coherent imaging with Fourier-transform holographyreveal nanoscale magnetic domain networks via magnetic dichroism of Co at theM2,3 edges as well as via strong dichroic signals at the O2,3 and N6,7 edges of Pt.We demonstrate for the first time simultaneous, two-color coherent imaging at afree-electron laser facility paving the way for a direct real space access toultrafast magnetization dynamics in complex multicomponent material systems.

Loading...
Thumbnail Image
Item

Perspective: Structure and ultrafast dynamics of biomolecular hydration shells

2017, Laage, Damien, Elsaesser, Thomas, Hynes, James T.

The structure and function of biomolecules can be strongly influenced by their hydration shells. A key challenge is thus to determine the extent to which these shells differ from bulk water, since the structural fluctuations and molecular excitations of hydrating water molecules within these shells can cover a broad range in both space and time. Recent progress in theory, molecular dynamics simulations, and ultrafast vibrational spectroscopy has led to new and detailed insight into the fluctuations of water structure, elementary water motions, and electric fields at hydrated biointerfaces. Here, we discuss some central aspects of these advances, focusing on elementary molecular mechanisms and processes of hydration on a femto-to picosecond time scale, with some special attention given to several issues subject to debate.

Loading...
Thumbnail Image
Item

Soft-mode driven polarity reversal in ferroelectrics mapped by ultrafast x-ray diffraction

2018, Hauf, Christoph, Hernandez Salvador, Antonio-Andres, Holtz, Marcel, Woerner, Michael, Elsaesser, Thomas

Quantum theory has linked microscopic currents and macroscopic polarizations of ferroelectrics, but the interplay of lattice excitations and charge dynamics on atomic length and time scales is an open problem. Upon phonon excitation in the prototypical ferroelectric ammonium sulfate [(NH4)2SO4], we determine transient charge density maps by femtosecond x-ray diffraction. A newly discovered low frequency-mode with a 3 ps period and sub-picometer amplitudes induces periodic charge relocations over some 100 pm, a hallmark of soft-mode behavior. The transient charge density allows for deriving the macroscopic polarization, showing a periodic reversal of polarity.

Loading...
Thumbnail Image
Item

Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources

2017, Holtz, Marcel, Hauf, Christoph, Weisshaupt, Jannick, Salvador, Antonio-Andres Hernandez, Woerner, Michael, Elsaesser, Thomas

Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub- 100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.

Loading...
Thumbnail Image
Item

Monitoring conical intersections in the ring opening of furan by attosecond stimulated X-ray Raman spectroscopy

2015, Hua, Weijie, Oesterling, Sven, Biggs, Jason D., Zhang, Yu, Ando, Hideo, de Vivie-Riedle, Regina, Fingerhut, Benjamin P., Mukamel, Shaul

Attosecond X-ray pulses are short enough to capture snapshots of molecules undergoing nonadiabatic electron and nuclear dynamics at conical intersections (CoIns). We show that a stimulated Raman probe induced by a combination of an attosecond and a femtosecond pulse has a unique temporal and spectral resolution for probing the nonadiabatic dynamics and detecting the ultrafast (∼4.5 fs) passage through a CoIn. This is demonstrated by a multiconfigurational self-consistent-field study of the dynamics and spectroscopy of the furan ring-opening reaction. Trajectories generated by surface hopping simulations were used to predict Attosecond Stimulated X-ray Raman Spectroscopy signals at reactant and product structures as well as representative snapshots along the conical intersection seam. The signals are highly sensitive to the changes in nonadiabatically coupled electronic structure and geometry.

Loading...
Thumbnail Image
Item

Toward ultrafast magnetic depth profiling using time-resolved x-ray resonant magnetic reflectivity

2021, Chardonnet, Valentin, Hennes, Marcel, Jarrier, Romain, Delaunay, Renaud, Jaouen, Nicolas, Kuhlmann, Marion, Ekanayake, Nagitha, Léveillé, Cyril, von Korff Schmising, Clemens, Schick, Daniel, Yao, Kelvin, Liu, Xuan, Chiuzbăian, Gheorghe S., Lüning, Jan, Vodungbo, Boris, Jal, Emmanuelle

During the last two decades, a variety of models have been developed to explain the ultrafast quenching of magnetization following femtosecond optical excitation. These models can be classified into two broad categories, relying either on a local or a non-local transfer of angular momentum. The acquisition of the magnetic depth profiles with femtosecond resolution, using time-resolved x-ray resonant magnetic reflectivity, can distinguish local and non-local effects. Here, we demonstrate the feasibility of this technique in a pump–probe geometry using a custom-built reflectometer at the FLASH2 free-electron laser (FEL). Although FLASH2 is limited to the production of photons with a fundamental wavelength of 4 nm (≃310 eV), we were able to probe close to the Fe L3 edge (706.8 eV) of a magnetic thin film employing the third harmonic of the FEL. Our approach allows us to extract structural and magnetic asymmetry signals revealing two dynamics on different time scales which underpin a non-homogeneous loss of magnetization and a significant dilation of 2 Å of the layer thickness followed by oscillations. Future analysis of the data will pave the way to a full quantitative description of the transient magnetic depth profile combining femtosecond with nanometer resolution, which will provide further insight into the microscopic mechanisms underlying ultrafast demagnetization.

Loading...
Thumbnail Image
Item

A liquid flatjet system for solution phase soft-x-ray spectroscopy

2015, Ekimova, Maria, Quevedo, Wilson, Faubel, Manfred, Wernet, Philippe, Nibbering, Erik T. J.

We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50 μm orifices, under an impact angle of 48° leads to double sheet formation, of which the first sheet is 4.6 mm long and 1.0 mm wide. The liquid flatjet operates fully functional under vacuum conditions (<10(-3) mbar), allowing soft-x-ray spectroscopy of aqueous solutions in transmission mode. We analyse the liquid water flatjet thickness under atmospheric pressure using interferomeric or mid-infrared transmission measurements and under vacuum conditions by measuring the absorbance of the O K-edge of water in transmission, and comparing our results with previously published data obtained with standing cells with Si3N4 membrane windows. The thickness of the first liquid sheet is found to vary between 1.4-3 μm, depending on the transverse and longitudinal position in the liquid sheet. We observe that the derived thickness is of similar magnitude under 1 bar and under vacuum conditions. A catcher unit facilitates the recycling of the solutions, allowing measurements on small sample volumes (∼10 ml). We demonstrate the applicability of this approach by presenting measurements on the N K-edge of aqueous NH4 (+). Our results suggest the high potential of using liquid flatjets in steady-state and time-resolved studies in the soft-x-ray regime.

Loading...
Thumbnail Image
Item

Transient magnetic gratings on the nanometer scale

2020, Weder, D., von Korff Schmising, C., Günther, C.M., Schneider, M., Engel, D., Hessing, P., Strüber, C., Weigand, M., Vodungbo, B., Jal, E., Liu, X., Merhe, A., Pedersoli, E., Capotondi, F., Lüning, J., Pfau, B., Eisebitt, S.

Laser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers.