Search Results

Now showing 1 - 10 of 1521
  • Item
    Methyl 5-chloro-2-hydr-oxy-3-(4-methoxyphenyl)-4,6-dimethylbenzoate
    (Chester : International Union of Crystallography, 2009) Adeel, M.; Ali, I.; Langer, P.; Villinger, A.
    In the title compound, C17H17ClO4, the dihedral angle between the mean planes of the two benzene rings is 65.92 (5)°. The methyl ester group lies within the ring plane [deviations of O atoms from the plane = -0.051 (2) and 0.151 (2) Å] due to an intra-molecular O - H⋯O hydrogen bond. In the crystal, molecules are held together by rather weak non-classical inter-molecular C - H⋯O hydrogen bonds, resulting in dimeric units about inversion centers, forming eight- and ten-membered ring systems as R22(8) and R2 2(10) motifs. © Adeel et al. 2009.
  • Item
    Ring-Closure Mechanisms Mediated by Laccase to Synthesize Phenothiazines, Phenoxazines, and Phenazines
    (Washington, DC : ACS Publications, 2020) Hahn, Veronika; Mikolasch, Annett; Weitemeyer, Josephine; Petters, Sebastian; Davids, Timo; Lalk, Michael; Lackmann, Jan-Wilm; Schauer, Frieder
    The green and environmentally friendly synthesis of highly valuable organic substances is one possibility for the utilization of laccases (EC 1.10.3.2). As reactants for the herein described syntheses, different o-substituted arylamines or arylthiols and 2,5-dihydroxybenzoic acid and its derivatives were used. In this way, the formation of phenothiazines, phenoxazines, and phenazines was achieved in aqueous solution mediated by the laccase of Pycnoporus cinnabarinus in the presence of oxygen. Two types of phenothiazines (3-hydroxy- and 3-oxo-phenothiazines) formed in one reaction assay were described for the first time. The cyclization reactions yielded C–N, C–S, or C–O bonds. The syntheses were investigated with regard to the substitution pattern of the reaction partners. Differences in C–S and C–N bond formations without cyclization are discussed.
  • Item
    [1-Dimethylsilyl-2-phenyl-3-(η5-tetramethylcyclopentadienyl) prop-1-en-1-ylκC1](n5-pentamethylcyclopentadienyl)- titanium(III)
    (Chester : International Union of Crystallography, 2009) Lamač, M.; Spannenberg, A.; Arndt, P.; Rosenthal, U.
    The title compound, [Ti(C10H15)(C20H 26Si)], was obtained from the reaction of [Ti{5: 1-C5Me4(CH2)}(5-C 5Me5)] with the alkynylsilane PhC2SiMe 2H. The complex crystallizes with two independent mol-ecules in the asymmetric unit, which differ in the conformation of the propenyl unit, resulting in their having opposite helicity. No inter-molecular inter-actions or inter-actions involving the Si- H bond are present. The observed geometrical parameters are unexceptional compared to known structures of the same type.
  • Item
    Synthesis and Characterization of Oxide Chloride Sr2VO3Cl, a Layered S = 1 Compound
    (Washington, DC : ACS Publications, 2023) Sannes, Johnny A.; Kizhake Malayil, Ranjith K.; Corredor, Laura T.; Wolter, Anja U. B.; Grafe, Hans-Joachim; Valldor, Martin
    The mixed-anion compound with composition Sr2VO3Cl has been synthesized for the first time, using the conventional high-temperature solid-state synthesis technique in a closed silica ampule under inert conditions. This compound belongs to the known Sr2TmO3Cl (Tm = Sc, Mn, Fe, Co, Ni) family, but with Tm = V. All homologues within this family can be described with the tetragonal space group P4/nmm (No. 129); from a Rietveld refinement of powder X-ray diffraction data on the Tm = V homologue, the unit cell parameters were determined to a = 3.95974(8) and c = 14.0660(4) Å, and the atomic parameters in the crystal structure could be estimated. The synthesized powder is black, implying that the compound is a semiconductor. The magnetic investigations suggest that Sr2VO3Cl is a paramagnet at high temperatures, exhibiting a μeff = 2.0 μB V-1 and antiferromagnetic (AFM) interactions between the magnetic vanadium spins (θCW = −50 K), in line with the V-O-V advantageous super-exchange paths in the V-O layers. Specific heat capacity studies indicate two small anomalies around 5 and 35 K, which however are not associated with long-range magnetic ordering. 35Cl ss-NMR investigations suggest a slow spin freezing below 4.2 K resulting in a glassy-like spin ground state.
  • Item
    2-hydroxyethylammonium iodide
    (Chester : International Union of Crystallography, 2014) Kohrt, C.; Spannenberg, A.; Werner, T.
    In the crystal structure of the title salt, C2H 8NO+·I-, N-H⋯O, N-H⋯I and O-H⋯I hydrogen bonds lead to the formation of layers staggered along the c axis.
  • Item
    Redetermination of EuScO3
    (Chester : International Union of Crystallography, 2009) Kahlenberg, V.; Maier, D.; Veličkov, B.
    Single crystals of europium(III) scandate(III), with ideal formula EuScO3, were grown from the melt using the micro-pulling-down method. The title compound crystallizes in an ortho-rhom-bic distorted perovskite-type structure, where Eu occupies the eightfold coordinated A sites (site symmetry m) and Sc resides on the centres of corner-sharing [ScO6] octa-hedra (B sites with site symmetry ). The structure of EuScO3 has been reported previously based on powder diffraction data [Liferovich & Mitchell (2004). J. Solid State Chem. 177, 2188-2197]. The results of the current redetermination based on single-crystal diffraction data shows an improvement in the precision of the structral and geometric parameters and reveals a defect-type structure. Site-occupancy refinements indicate an Eu deficiency on the A site coupled with O defects on one of the two O-atom positions. The crystallochemical formula of the investigated sample may thus be written as A(0.032Eu0.968)BScO2.952.
  • Item
    Iodidobis(≠5-penta-methyl-cyclo-penta-dien-yl)titanium(III)
    (Chester : International Union of Crystallography, 2010) Kessler, M.; Spannenberg, A.; Rosenthal, U.
    In the title complex mol-ecule, [Ti(C10H15) 2I], the paramagnetic Ti(III) atom is coordinated by two penta-methyl-cyclo-penta-dienyl (Cp*) ligands and one iodide ligand. The two Cp*ligands are in a staggered orientation. The coordination geometry at the titanium atom can be described as distorted trigonal-planar.
  • Item
    Tris(η5-cyclopentadienyl)hafnium(III)
    (Chester : International Union of Crystallography, 2011) Burlakov, V.V.; Arndt, P.; Spannenberg, A.; Rosenthal, U.
    In the crystal structure of the title compound, [Hf(C5H 5)3], three cyclopentadienyl ligands surround the Hf III atom in a trigonal-planar geometry. The molecule lies on a sixfold inversion axis.
  • Item
    {N,N-Bis[bis(2,2,2-trifluoroethoxy)phosphanyl]methylamine- κ2 P,P′}bis(η5-cyclopentadienyl) titanium(II)
    (Chester : International Union of Crystallography, 2013) Haehnel, M.; Hansen, S.; Spannenberg, A.; Beweries, T.
    The title compound, [Ti(C5H5)2(C 9H11F12NO4P2)], is a four-membered titanacycle obtained from the reaction of Cp2Ti(η 2-Me3SiC2SiMe3) and CH 3N[P(OCH2CF3)2]2 {N,N-bis[bis(trifluoroethoxy)phosphanyl]methylamine, tfepma}. The Ti II atom is coordinated by two cyclopentadienyl (Cp) ligands and the chelating tfepma ligand in a strongly distorted tetrahedral geometry. The molecule is located on a mirror plane.
  • Item
    Dicyclohexylbis(naphthalen-1-ylmethyl)phosphonium chloride chloroform disolvate
    (Chester : International Union of Crystallography, 2012) Gowrisankar, S.; Neumann, H.; Spannenberg, A.; Beller, M.
    In the title solvated phosphonium salt, C34H40P+·Cl -·2CHCl3, the two cyclohexyl and two 1-naphthylmethyl groups at the P atom are in a distorted tetrahedral arrangement [105.26 (6)-113.35 (6)°]. Both cyclohexyl rings adopt a chair conformation. The dihedral angle between the naphthyl ring systems is 74.08 (3)°.