Search Results

Now showing 1 - 10 of 59
  • Item
    PeakTree: A framework for structure-preserving radar Doppler spectra analysis
    (Göttingen : Copernicus GmbH, 2019) Radenz, M.; Bühl, J.; Seifert, P.; Griesche, H.; Engelmann, R.
    Clouds are frequently composed of more than one particle population even at the smallest scales. Cloud radar observations frequently contain information on multiple particle species in the observation volume when there are distinct peaks in the Doppler spectrum. Multi-peaked situations are not taken into account by established algorithms, which only use moments of the Doppler spectrum. In this study, we propose a new algorithm that recursively represents the subpeaks as nodes in a binary tree. Using this tree data structure to represent the peaks of a Doppler spectrum, it is possible to drop all a priori assumptions on the number and arrangement of subpeaks. The approach is rigid, unambiguous and can provide a basis for advanced analysis methods. The applicability is briefly demonstrated in two case studies, in which the tree structure was used to investigate particle populations in Arctic multilayered mixed-phase clouds, which were observed during the research vessel Polarstern expedition PS106 and the Atmospheric Radiation Measurement Program BAECC campaign.
  • Item
    Enhancing the spatiotemporal features of polar mesosphere summer echoes using coherent MIMO and radar imaging at MAARSY
    (Göttingen : Copernicus GmbH, 2019) Urco, J.M.; Chau, J.L.; Weber, T.; Latteck, R.
    Polar mesospheric summer echoes (PMSEs) are very strong radar echoes caused by the presence of ice particles, turbulence, and free electrons in the mesosphere over polar regions. For more than three decades, PMSEs have been used as natural tracers of the complicated atmospheric dynamics of this region. Neutral winds and turbulence parameters have been obtained assuming PMSE horizontal homogeneity on scales of tens of kilometers. Recent radar imaging studies have shown that PMSEs are not homogeneous on these scales and instead they are composed of kilometer-scale structures. In this paper, we present a technique that allows PMSE observations with unprecedented angular resolution (∼0.6). The technique combines the concept of coherent MIMO (Multiple Input Multiple Output) and two high-resolution imaging techniques, i.e., Capon and maximum entropy (MaxEnt). The resulting resolution is evaluated by imaging specular meteor echoes. The gain in angular resolution compared to previous approaches using SIMO (Single Input Multiple Output) and Capon is at least a factor of 2; i.e., at 85 km, we obtain a horizontal resolution of ∼900 m. The advantage of the new technique is evaluated with two events of 3-D PMSE structures showing: (1) horizontal wavelengths of 8-10 km and periods of 4-7 min, drifting with the background wind, and (2) horizontal wavelengths of 12-16 km and periods of 15-20 min, not drifting with the background wind. Besides the advantages of the implemented technique, we discuss its current challenges, like the use of reduced power aperture and processing time, as well as the future opportunities for improving the understanding of the complex small-scale atmospheric dynamics behind PMSEs. © 2019 Author(s).
  • Item
    Quasi‐10‐Day Wave and Semidiurnal Tide Nonlinear Interactions During the Southern Hemispheric SSW 2019 Observed in the Northern Hemispheric Mesosphere
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Chau, Jorge L.; Forbes, Jeffrey M.; Thorsen, Denise; Li, Guozhu; Siddiqui, Tarique Adnan; Yamazaki, Yosuke; Hocking, Wayne K.
    Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi-10- and 6-day planetary waves (Q10DW and Q6DW, m = 1), solar semidiurnal tides with m = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB, m = 1 and 3) of Q10DW-SW2 nonlinear interactions. We further present 7-year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley-Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW. © 2020. The Authors.
  • Item
    Characterization and first results from LACIS-T : a moist-air wind tunnel to study aerosol–cloud–turbulence interactions
    (Katlenburg-Lindau : Copernicus, 2020) Niedermeier, Dennis; Voigtländer, Jens; Schmalfuß, Silvio; Busch, Daniel; Schumacher, Jörg; Shaw, Raymond A.; Stratmann, Frank
    The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>−40∘C ). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.
  • Item
    The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: First applications in the cloudy Arctic boundary layer
    (Göttingen : Copernicus GmbH, 2019) Egerer, U.; Gottschalk, M.; Siebert, H.; Ehrlich, A.; Wendisch, M.
    The new BELUGA (Balloon-bornE moduLar Utility for profilinG the lower Atmosphere) tethered balloon system is introduced. It combines a set of instruments to measure turbulent and radiative parameters and energy fluxes. BELUGA enables collocated measurements either at a constant altitude or as vertical profiles up to 1.5km in height. In particular, the instrument payload of BELUGA comprises three modular instrument packages for high-resolution meteorological, wind vector and broadband radiation measurements. Collocated data acquisition allows for estimates of the driving parameters in the energy balance at various heights. Heating rates and net irradiances can be related to turbulent fluxes and local turbulence parameters such as dissipation rates. In this paper the technical setup, the instrument performance, and the measurement strategy of BELUGA are explained. Furthermore, the high vertical resolution due to the slow ascent speed is highlighted as a major advantage of tethered balloon-borne observations. Three illustrative case studies of the first application of BELUGA in the Arctic atmospheric boundary layer are presented. As a first example, measurements of a single-layer stratocumulus are discussed. They show a pronounced cloud top radiative cooling of up to 6K h-1. To put this into context, a second case elaborates respective measurements with BELUGA in a cloudless situation. In a third example, a multilayer stratocumulus was probed, revealing reduced turbulence and negligible cloud top radiative cooling for the lower cloud layer. In all three cases the net radiative fluxes are much higher than turbulent fluxes. Altogether, BELUGA has proven its robust performance in cloudy conditions of the Arctic atmospheric boundary layer.
  • Item
    Four-Dimensional Quantification of Kelvin-Helmholtz Instabilities in the Polar SummerMesosphere Using Volumetric Radar Imaging
    (Hoboken, NJ : Wiley, 2020) Chau, J.L.; Urco, J.M.; Avsarkisov, V.; Vierinen, J.P.; Latteck, R.; Hall, C.M.; Tsutsumi, M.
    We present and characterize in time and three spatial dimensions a Kelvin-Helmholtz Instability (KHI) event from polar mesospheric summer echoes (PMSE) observed with the Middle Atmosphere Alomar Radar System. We use a newly developed radar imaging mode, which observed PMSE intensity and line of sight velocity with high temporal and angular resolution. The identified KHI event occurs in a narrow layer of 2.4 km thickness centered at 85 km altitude, is elongated along north-south direction, presents separation between billows of ~ 8 km in the east-west direction, and its billow width is ~ 3 km. The accompanying vertical gradients of the horizontal wind are between 35 and 45 m/s/km and vertical velocities inside the billows are ± 12 m/s. Based on the estimated Richardson (< 0.25), horizontal Froude ( ~ 0.8), and buoyancy Reynolds ( ~ 2.5 × 10 4) numbers, the observed event is a KHI that occurs under weak stratification and generates strong turbulence. © 2019. The Authors.
  • Item
    Combining cloud radar and radar wind profiler for a value added estimate of vertical air motion and particle terminal velocity within clouds
    (Göttingen : Copernicus GmbH, 2018) Radenz, M.; Bühl, J.; Lehmann, V.; Görsdorf, U.; Leinweber, R.
    Vertical-stare observations from a 482MHz radar wind profiler and a 35GHz cloud radar are combined on the level of individual Doppler spectra to measure vertical air motions in clear air, clouds and precipitation. For this purpose, a separation algorithm is proposed to remove the influence of falling particles from the wind profiler Doppler spectra and to calculate the terminal fall velocity of hydrometeors. The remaining error of both vertical air motion and terminal fall velocity is estimated to be better than 0.1ms-1 using numerical simulations. This combination of instruments allows direct measurements of in-cloud vertical air velocity and particle terminal fall velocity by means of ground-based remote sensing. The possibility of providing a profile every 10s with a height resolution of < 100m allows further insight into the process scale of in-cloud dynamics. The results of the separation algorithm are illustrated by two case studies, the first covering a deep frontal cloud and the second featuring a shallow mixed-phase cloud.
  • Item
    ZonalWave Number Diagnosis of RossbyWave-Like Oscillations Using Paired Ground-Based Radars
    (Hoboken, NJ : Wiley, 2020) He, Maosheng; Yamazaki, Yosuke; Hoffmann, Peter; Hall, Chris M.; Tsutsumi, Masaki; Li, Guozhu; Chau, Jorge Luis
    Free traveling Rossby wave normal modes (RNMs) are often investigated through large-scale space-time spectral analyses, which therefore is subject to observational availability, especially in the mesosphere. Ground-based mesospheric observations were broadly used to identify RNMs mostly according to the periods of RNMs without resolving their horizontal scales. The current study diagnoses zonal wave numbers of RNM-like oscillations occurring in mesospheric winds observed by two meteor radars at about 79°N. We explore four winters comprising the major stratospheric sudden warming events (SSWs) 2009, 2010, and 2013. Diagnosed are predominant oscillations at the periods of 10 and 16 days lasting mostly for three to five whole cycles. All dominant oscillations are associated with westward zonal wave number m=1, excepting one 16-day oscillation associated with m=2. We discuss the m=1 oscillations as transient RNMs and the m=2 oscillation as a secondary wave of nonlinear interaction between an RNM and a stationary Rossby wave. All the oscillations occur around onsets of the three SSWs, suggesting associations between RNMs and SSWs. For comparison, we also explore the wind collected by a similar network at 54°N during 2012–2016. Explored is a manifestation of 5-day wave, namely, an oscillation at 5–7 days with m=1), around the onset of SSW 2013, supporting the associations between RNMs and SSWs. ©2020. The Authors.
  • Item
    PMC Turbo : Studying Gravity Wave and Instability Dynamics in the Summer Mesosphere Using Polar Mesospheric Cloud Imaging and Profiling From a Stratospheric Balloon
    (Hoboken, NJ : Wiley, 2019) Fritts, David C.; Miller, Amber D.; Kjellstrand, C. Bjorn; Geach, Christopher; Williams, Bifford P.; Kaifler, Bernd; Kaifler, Natalie; Jones, Glenn; Rapp, Markus; Limon, Michele; Reimuller, Jason; Wang, Ling; Hanany, Shaul; Gisinger, Sonja; Zhao, Yucheng; Stober, Gunter; Randall, Cora E.
    The Polar Mesospheric Cloud Turbulence (PMC Turbo) experiment was designed to observe and quantify the dynamics of small-scale gravity waves (GWs) and instabilities leading to turbulence in the upper mesosphere during polar summer using instruments aboard a stratospheric balloon. The PMC Turbo scientific payload comprised seven high-resolution cameras and a Rayleigh lidar. Overlapping wide and narrow camera field of views from the balloon altitude of ~38 km enabled resolution of features extending from ~20 m to ~100 km at the PMC layer altitude of ~82 km. The Rayleigh lidar provided profiles of temperature below the PMC altitudes and of the PMCs throughout the flight. PMCs were imaged during an ~5.9-day flight from Esrange, Sweden, to Northern Canada in July 2018. These data reveal sensitivity of the PMCs and the dynamics driving their structure and variability to tropospheric weather and larger-scale GWs and tides at the PMC altitudes. Initial results reveal strong modulation of PMC presence and brightness by larger-scale waves, significant variability in the occurrence of GWs and instability dynamics on time scales of hours, and a diversity of small-scale dynamics leading to instabilities and turbulence at smaller scales. At multiple times, the overall field of view was dominated by extensive and nearly continuous GWs and instabilities at horizontal scales from ~2 to 100 km, suggesting sustained turbulence generation and persistence. At other times, GWs were less pronounced and instabilities were localized and/or weaker, but not absent. An overview of the PMC Turbo experiment motivations, scientific goals, and initial results is presented here. © 2019. The Authors.
  • Item
    Ice crystal number concentration from lidar, cloud radar and radar wind profiler measurements
    (Katlenburg-Lindau : Copernicus, 2019) Bühl, Johannes; Seifert, Patric; Radenz, Martin; Ansmann, Albert
    A new method for the retrieval of ice crystal number concentration (ICNC) from combined active remote-sensing measurements of Raman lidar, cloud radar and radar wind profiler is presented. We exploit – for the first time – measurements of terminal fall velocity together with the radar reflectivity factor and/or the lidar-derived particle extinction coefficient in clouds for retrieving the number concentration of pristine ice particles with presumed particle shapes. A lookup table approach for the retrieval of the properties of the particle size distribution from observed parameters is presented. Analysis of methodological uncertainties and error propagation is performed, which shows that a retrieval of ice particle number concentration based on terminal fall velocity is possible within 1 order of magnitude. Comparison between a retrieval of the number concentration based on terminal fall velocity on the one hand and lidar and cloud radar on the other shows agreement within the uncertainties of the retrieval.