Search Results

Now showing 1 - 10 of 16
  • Item
    Phase transition and anomalous low temperature ferromagnetic phase in Pr 0.6Sr 0.4MnO 3 single crystals
    (New York, NY : Springer Science + Business Media B.V., 2009) Rößler, S.; Harikrishnan, S.; Naveen Kumar, C.M.; Bhat, H.L.; Elizabeth, S.; Rößler, U.K.; Steglich, F.; Wirth, S.
    We report on the magnetic and electrical properties of Pr 0.6Sr 0.4MnO 3 single crystals. This compound undergoes a continuous paramagnetic-ferromagnetic transition with a Curie temperature T C301 K and a first-order structural transition at T S64 K. At T S, the magnetic susceptibility exhibits an abrupt jump, and a corresponding small hump is seen in the resistivity. The critical behavior of the static magnetization and the temperature dependence of the resistivity are consistent with the behavior expected for a nearly isotropic ferromagnet with short-range exchange belonging to the Heisenberg universality class. The magnetization (M-H) curves below T S are anomalous in that the virgin curve lies outside the subsequent M-H loops. The hysteretic structural transition at T S as well as the irreversible magnetization processes below T S can be explained by phase separation between a high-temperature orthorhombic and a low-temperature monoclinic ferromagnetic phase.
  • Item
    Strong effects of uniaxial pressure and short-range correlations in Cr2Ge2Te6
    (College Park, MD : APS, 2022) Spachmann, S.; Elghandour, A.; Selter, S.; Büchner, B.; Aswartham, S.; Klingeler, R.
    Cr2Ge2Te6 is a quasi-two-dimensional semiconducting van der Waals ferromagnet down to the bilayer with great potential for technological applications. Engineering the critical temperature to achieve room-temperature applications is one of the critical next steps on this path. Here, we report high-resolution capacitance dilatometry studies on Cr2Ge2Te6 single crystals which directly prove significant magnetoelastic coupling and provide quantitative values of the large uniaxial pressure effects on long-range magnetic order (∂TC/∂pc=24.7 K/GPa and ∂TC/∂pab=−15.6 K/GPa) derived from thermodynamic relations. Moderate in-plane strain is thus sufficient to strongly enhance ferromagnetism in Cr2Ge2Te6 up to room temperature. Moreover, unambiguous signs of short-range magnetic order up to 200 K are found.
  • Item
    Visualization of localized perturbations on a (001) surface of the ferromagnetic semimetal EuB6
    (College Park, MD : American Physical Society, 2020) Rößler, S.; Jiao, L.; Seiro, S.; Rosa, P.F.S.; Fisk, Z.; Rößler, U.K.; Wirth, S.
    We performed scanning tunneling microscopy (STM) and spectroscopy on a (001) surface of the ferromagnetic semimetal EuB6. Large-amplitude oscillations emanating from the elastic scattering of electrons by the surface impurities are observed in topography and in differential conductance maps. Fourier transform of the conductance maps embracing these regions indicate a holelike dispersion centered around the Γ point of the two-dimensional Brillouin zone. Using density functional theory slab calculations, we identify a spin-split surface state, which stems from the dangling pz orbitals of the apical boron atom. Hybridization with bulk electronic states leads to a resonance enhancement in certain regions around the Γ point, contributing to the remarkably strong real-space response around static point defects, which are observed in STM measurements.
  • Item
    Spin pumping at interfaces with ferro- and paramagnetic Fe60Al40films acting as spin source and spin sink
    (Melville, NY : American Inst. of Physics, 2022) Strusch, T.; Lenz, K.; Meckenstock, R.; Bali, R.; Ehrler, J.; Lindner, J.; Fassbender, J.; Farle, M.; Potzger, K.; Semisalova, A.
    We present a study of spin pumping efficiency and determine the spin mixing conductance and spin diffusion length in thin bilayer films based on 3d transition metal alloy Fe60Al40. Due to its magnetostructural phase transition, Fe60Al40 can be utilized as a ferromagnetic (FM) or paramagnetic (PM) material at the same temperature depending on its structural order; thus a thin Fe60Al40 film can act as a spin source or a spin sink when interfaced with a paramagnet or a ferromagnet, respectively. Ferromagnetic resonance measurements were performed in a frequency range of 5-35 GHz on bilayer films composed of FM-Fe60Al40/Pd and PM-Fe60Al40/Ni80Fe20 (permalloy). The increase in damping with the thickness of the paramagnetic layer was interpreted as a result of spin pumping into the paramagnet. We determine the spin mixing conductance g P d ↑↓ = (3.8 ± 0.5) × 10 18 m - 2 at the FM-Fe60Al40/Pd interface and the spin diffusion length λ P d = 9.1 ± 2.0 nm in Pd. For the PM-Fe60Al40/permalloy interface, we find a spin mixing conductance g F e A l ↑↓ = (2.1 ± 0.2) × 10 18 m - 2 and a spin diffusion length λ F e A l = 11.9 ± 0.2 nm for PM-Fe60Al40. The demonstrated bi-functionality of the Fe60Al40 alloy in spin pumping structures may be promising for spintronic applications.
  • Item
    Magnetic hysteresis and strong ferromagnetic coupling of sulfur-bridged Dy ions in clusterfullerene Dy2S@C82
    (Cambridge : RSC, 2020) Krylov, Denis; Velkos, Georgios; Chen, Chia-Hsiang; Büchner, Bernd; Kostanyan, Aram; Greber, Thomas; Avdoshenko, Stanislav M.; Popov, Alexey A.
    Two isomers of metallofullerene Dy2S@C82 with sulfur-bridged Dy ions exhibit broad magnetic hysteresis with sharp steps at sub-Kelvin temperature. Analysis of the level crossing events for different orientations of a magnetic field showed that even in powder samples, the hysteresis steps caused by quantum tunneling of magnetization can provide precise information on the strength of intramolecular Dy⋯Dy interactions. A comparison of different methods to determine the energy difference between ferromagnetic and antiferromagnetic states showed that sub-Kelvin hysteresis gives the most robust and reliable values. The ground state in Dy2S@C82 has ferromagnetic coupling of Dy magnetic moments, whereas the state with antiferromagnetic coupling in Cs and C3v cage isomers is 10.7 and 5.1 cm-1 higher, respectively. The value for the Cs isomer is among the highest found in metallofullerenes and is considerably larger than that reported in non-fullerene dinuclear molecular magnets. Magnetization relaxation times measured in zero magnetic field at sub-Kelvin temperatures tend to level off near 900 and 3200 s in Cs and C3v isomers. These times correspond to the quantum tunneling relaxation mechanism, in which the whole magnetic moment of the Dy2S@C82 molecule flips at once as a single entity. © the Partner Organisations.
  • Item
    Electrodeposition of Fe70Pd30 nanowires from a complexed ammonium-sulfosalicylic electrolyte with high stability
    (Amsterdam : Elsevier, 2010) Haehnel, V.; Fähler, S.; Schultz, L.; Schlörb, H.
    A highly stable plating bath for the electrodeposition of Fe-Pd nanowires into nanoporous alumina templates has been developed. Complexing of both metal ions and exchanging Fe2+ by Fe3+ avoid chemical reduction of Pd ions and, therefore, undesirable deposition. By using a pulse potential mode and appropriate adjustment of deposition potentials homogeneously filled templates without surface deposits and nanowires close to the desired composition of Fe70Pd30 have been achieved. These alloy nanowires represent a key step towards nanoactuators based on magnetic shape memory alloys. © 2010 Elsevier B.V. All rights reserved.
  • Item
    Increasing the performance of a superconducting spin valve using a Heusler alloy
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2018) Kamashev, A.A.; Validov, A.A.; Schumann, J.; Kataev, V.; Büchner, B.; Fominov, Y.V.; Garifullin, I.A.
    We have studied superconducting properties of spin-valve thin-layer heterostructures CoOx/F1/Cu/F2/Cu/Pb in which the ferromagnetic F1 layer was made of Permalloy while for the F2 layer we have taken a specially prepared film of the Heusler alloy Co2Cr1-xFexAl with a small degree of spin polarization of the conduction band. The heterostructures demonstrate a significant superconducting spin-valve effect, i.e., a complete switching on and offof the superconducting current flowing through the system by manipulating the mutual orientations of the magnetization of the F1 and F2 layers. The magnitude of the effect is doubled in comparison with the previously studied analogous multilayers with the F2 layer made of the strong ferromagnet Fe. Theoretical analysis shows that a drastic enhancement of the switching effect is due to a smaller exchange field in the heterostructure coming from the Heusler film as compared to Fe. This enables to approach an almost ideal theoretical magnitude of the switching in the Heusler-based multilayer with a F2 layer thickness of ca. 1 nm. © 2018 Kamashev et al.
  • Item
    Superconducting switching due to a triplet component in the Pb/Cu/Ni/Cu/Co2Cr1-xFexAly spin-valve structure
    (Frankfurt am Main : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2019) Kamashev, A.A.; Garif'yanov, N.N.; Validov, A.A.; Schumann, J.; Kataev, V.; Büchner, B.; Fominov, Y.V.; Garifullin, I.A.
    We report the superconducting properties of the Co2Cr1-xFexAly/Cu/Ni/Cu/Pb spin-valve structure the magnetic part of which comprises the Heusler alloy layer HA = Co2Cr1-xFexAly with a high degree of spin polarization (DSP) of the conduction band and a Ni layer of variable thickness. The separation between the superconducting transition curves measured for the parallel (α = 0°) and perpendicular (α = 90°) orientation of the magnetization of the HA and the Ni layers reaches up to 0.5 K (α is the angle between the magnetization of two ferromagnetic layers). For all studied samples the dependence of the superconducting transition temperature Tc on α demonstrates a deep minimum in the vicinity of the perpendicular configuration of the magnetizations. This suggests that the observed minimum and the corresponding full switching effect of the spin valve is caused by the long-range triplet component of the superconducting condensate in the multilayer. Such a large effect can be attributed to a half-metallic nature of the HA layer, which in the orthogonal configuration efficiently draws off the spin-polarized Cooper pairs from the space between the HA and Ni layers. Our results indicate a significant potential of the concept of a superconducting spin-valve multilayer comprising a half-metallic ferromagnet, recently proposed by A. Singh et al., Phys. Rev. X 2015, 5, 021019, in achieving large values of the switching effect.
  • Item
    Magnetically induced anisotropy of flux penetration into strong-pinning superconductor/ferromagnet bilayers
    (Bristol : Institute of Physics Publishing, 2019) Simmendinger, J.; Hanisch, J.; Bihler, M.; Ionescu, A.M.; Weigand, M.; Sieger, M.; Hühne, R.; Rijckaert, H.; Van Driessche, I.; Schütz, G.; Albrecht, J.
    We studied the impact of soft ferromagnetic permalloy (Py) on the shielding currents in a strong-pinning superconductor - YBa2Cu3O7-δ with Ba2Y(Nb/Ta)O6 nano-precipitates - by means of scanning transmission x-ray microscopy. Typically and in particular when in the thin film limit, superconductor/ferromagnet (SC/FM) bilayers exhibit isotropic properties of the flux line ensemble at all temperatures. However, in elements with small aspect ratio a significant anisotropy in flux penetration is observed. We explain this effect by local in-plane fields arising from anisotropic magnetic stray fields originated by the ferromagnet. This leads to direction-dependent motion of magnetic vortices inside the SC/FM bilayer. Our results demonstrate that small variations of the magnetic properties can have huge impact on the superconductor.
  • Item
    Crossover of skyrmion and helical modulations in noncentrosymmetric ferromagnets
    (Bristol : Institute of Physics Publishing, 2018) Leonov, A.O.; Bogdanov, A.N.
    The coupling between angular (twisting) and longitudinal modulations arising near the ordering temperature of noncentrosymmetric ferromagnets strongly influences the structure of skyrmion states and their evolution in an applied magnetic field. In the precursor states of cubic helimagnets, a continuous transformation of skyrmion lattices into the saturated state is replaced by the first-order processes accompanied by the formation of multidomain states. Recently the effects imposed by dominant longitudinal modulations have been reported in bulk MnSi and FeGe. Similar phenomena can be observed in the precursor regions of cubic helimagnet epilayers and in easy-plane chiral ferromagnets (e.g. in the hexagonal helimagnet CrNb3S6).