Search Results

Now showing 1 - 10 of 84
  • Item
    Secondary Structure and Glycosylation of Mucus Glycoproteins by Raman Spectroscopies
    (Columbus, Ohio : American Chemical Society, 2016) Davies, Heather S.; Singh, Prabha; Deckert-Gaudig, Tanja; Deckert, Volker; Rousseau, Karine; Ridley, Caroline E.; Dowd, Sarah E.; Doig, Andrew J.; Pudney, Paul D. A.; Thornton, David J.; Blanch, Ewan W.
    The major structural components of protective mucus hydrogels on mucosal surfaces are the secreted polymeric gel-forming mucins. The very high molecular weight and extensive O-glycosylation of gel-forming mucins, which are key to their viscoelastic properties, create problems when studying mucins using conventional biochemical/structural techniques. Thus, key structural information, such as the secondary structure of the various mucin subdomains, and glycosylation patterns along individual molecules, remains to be elucidated. Here, we utilized Raman spectroscopy, Raman optical activity (ROA), circular dichroism (CD), and tip-enhanced Raman spectroscopy (TERS) to study the structure of the secreted polymeric gel-forming mucin MUC5B. ROA indicated that the protein backbone of MUC5B is dominated by unordered conformation, which was found to originate from the heavily glycosylated central mucin domain by isolation of MUC5B O-glycan-rich regions. In sharp contrast, recombinant proteins of the N-terminal region of MUC5B (D1-D2-D′-D3 domains, NT5B), C-terminal region of MUC5B (D4-B-C-CK domains, CT5B) and the Cys-domain (within the central mucin domain of MUC5B) were found to be dominated by the β-sheet. Using these findings, we employed TERS, which combines the chemical specificity of Raman spectroscopy with the spatial resolution of atomic force microscopy to study the secondary structure along 90 nm of an individual MUC5B molecule. Interestingly, the molecule was found to contain a large amount of α-helix/unordered structures and many signatures of glycosylation, pointing to a highly O-glycosylated region on the mucin.
  • Item
    Quantifying ligand-cell interactions and determination of the surface concentrations of ligands on hydrogel films: The measurement challenge
    (Melville, NY : AIP Publishing, 2015) Beer, Meike V.; Hahn, Kathrin; Diederichs, Sylvia; Fabry, Marlies; Singh, Smriti; Spencer, Steve J.; Salber, Jochen; Möller, Martin; Shard, Alexander G.; Groll, Jürgen
    Hydrogels are extensively studied for biomaterials application as they provide water swollen noninteracting matrices in which specific binding motifs and enzyme-sensitive degradation sites can be incorporated to tailor cell adhesion, proliferation, and migration. Hydrogels also serve as excellent basis for surface modification of biomaterials where interfacial characteristics are decisive for implant success or failure. However, the three-dimensional nature of hydrogels makes it hard to distinguish between the bioactive ligand density at the hydrogel-cell interface that is able to interact with cells and the ligands that are immobilized inside the hydrogel and not accessible for cells. Here, the authors compare x-ray photoelectron spectrometry (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), enzyme linked immunosorbent assay (ELISA), and the correlation with quantitative cell adhesion using primary human dermal fibroblasts (HDF) to gain insight into ligand distribution. The authors show that although XPS provides the most useful quantitative analysis, it lacks the sensitivity to measure biologically meaningful concentrations of ligands. However, ToF-SIMS is able to access this range provided that there are clearly distinguishable secondary ions and a calibration method is found. Detection by ELISA appears to be sensitive to the ligand density on the surface that is necessary to mediate cell adhesion, but the upper limit of detection coincides closely with the minimal ligand spacing required to support cell proliferation. Radioactive measurements and ELISAs were performed on amine reactive well plates as true 2D surfaces to estimate the ligand density necessary to allow cell adhesion onto hydrogel films. Optimal ligand spacing for HDF adhesion and proliferation on ultrathin hydrogel films was determined as 6.5 ± 1.5 nm.
  • Item
    The innate immune response of self-assembling silk fibroin hydrogels
    (Cambridge : Royal Soc. of Chemistry, 2021) Gorenkova, Natalia; Maitz, Manfred F.; Böhme, Georg; Alhadrami, Hani A.; Jiffri, Essam H.; Totten, John D.; Werner, Carsten; Carswell, Hilary V. O.; Seib, F. Philipp
    Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses. This journal is
  • Item
    Orchestrated control of filaggrin-actin scaffolds underpins cornification
    (London [u.a.] : Nature Publishing Group, 2018) Gutowska-Owsiak, Danuta; de La Serna, Jorge Bernardino; Fritzsche, Marco; Naeem, Aishath; Podobas, Ewa I.; Leeming, Michael; Colin-York, Huw; O’Shaughnessy, Ryan; Eggeling, Christian; Ogg, Graham S.
    Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and β-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.
  • Item
    Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications
    (London : Soc., 2014) Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Janaszewska, Anna; Lazniewska, Joanna; Voit, Brigitte
    In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promise.
  • Item
    Ultracompact three-dimensional tubular conductivity microsensors for ionic and biosensing applications
    (Washington, DC : American Chemical Society, 2014) Martinez-Cisneros, C.S.; Sanchez, S.; Xi, W.; Schmidt, O.G.
    We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline. These highly integrated conductivity tubular sensors thus open new possibilities for lab-in-a-tube devices for bioapplications such as biosensing and bioelectronics.
  • Item
    Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications
    (Basel : MDPI AG, 2014) Jahangiri, E.; Reichelt, S.; Thomas, I.; Hausmann, K.; Schlosser, D.; Schulze, A.
    The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 μm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste-water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel-than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.
  • Item
    Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells
    (Cambridge : RSC Publ., 2017) Bachhuka, Akash; Delalat, Bahman; Ghaemi, Soraya Rasi; Gronthos, Stan; Voelcker, Nicolas H.; Vasilev, Krasimir
    Advanced medical devices, treatments and therapies demand an understanding of the role of interfacial properties on the cellular response. This is particularly important in the emerging fields of cell therapies and tissue regeneration. In this study, we evaluate the role of surface nanotopography on the fate of human dental pulp derived stem cells (hDPSC). These stem cells have attracted interest because of their capacity to differentiate to a range of useful lineages but are relatively easy to isolate. We generated and utilized density gradients of gold nanoparticles which allowed us to examine, on a single substrate, the influence of nanofeature density and size on stem cell behavior. We found that hDPSC adhered in greater numbers and proliferated faster on the sections of the gradients with higher density of nanotopography features. Furthermore, greater surface nanotopography density directed the differentiation of hDPSC to osteogenic lineages. This study demonstrates that carefully tuned surface nanotopography can be used to manipulate and guide the proliferation and differentiation of these cells. The outcomes of this study can be important in the rational design of culture substrates and vehicles for cell therapies, tissue engineering constructs and the next generation of biomedical devices where control over the growth of different tissues is required.
  • Item
    Human spermbots for patient-representative 3D ovarian cancer cell treatment
    (Cambridge : RSC Publ., 2020) Xu, Haifeng; Medina-Sánchez, Mariana; Zhang, Wunan; Seaton, Melanie P. H.; Brison, Daniel R.; Edmondson, Richard J.; Taylor, Stephen S.; Nelson, Louisa; Zeng, Kang; Bagley, Steven; Ribeiro, Carla; Restrepo, Lina P.; Lucena, Elkin; Schmidt, Christine K.; Schmidt, Oliver G.
    Cellular micromotors are attractive for locally delivering high concentrations of drug, and targeting hard-to-reach disease sites such as cervical cancer and early ovarian cancer lesions by non-invasive means. Spermatozoa are highly efficient micromotors perfectly adapted to traveling up the female reproductive system. Indeed, bovine sperm-based micromotors have shown potential to carry drugs toward gynecological cancers. However, due to major differences in the molecular make-up of bovine and human sperm, a key translational bottleneck for bringing this technology closer to the clinic is to transfer this concept to human material. Here, we successfully load human sperm with Doxorubicin (DOX) and perform treatment of 3D cervical cancer and patient-representative ovarian cancer cell cultures, resulting in strong anticancer cell effects. Additionally, we define the subcellular localization of the chemotherapeutic drug within human sperm, using high-resolution optical microscopy. We also assess drug effects on sperm motility and viability over time, employing sperm samples from healthy donors as well as assisted reproduction patients. Finally, we demonstrate guidance and release of human drug-loaded sperm onto cancer tissues using magnetic microcaps, and show the sperm microcap loaded with a second anticancer drug, camptothecin (CPT), which unlike DOX is not suitable for directly loading into sperm due to its hydrophobic nature. This co-drug delivery approach opens up novel targeted combinatorial drug therapies for future applications. © 2020 The Royal Society of Chemistry.
  • Item
    Cell stimulation versus cell death induced by sequential treatments with pulsed electric fields and cold atmospheric pressure plasma
    (San Francisco, California, US : PLOS, 2018) Steuer, Anna; Wolff, Christina M.; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Kolb, Juergen F.
    Pulsed electric fields (PEFs) and cold atmospheric pressure plasma (CAP) are currently both investigated for medical applications. The exposure of cells to PEFs can induce the formation of pores in cell membranes and consequently facilitate the uptake of molecules. In contrast, CAP mainly acts through reactive species that are generated in the liquid environment. The objective of this study was to determine, if PEFs combined with plasma-treated cell culture medium can mutually reinforce effects on viability of mammalian cells. Experiments were conducted with rat liver epithelial WB-F344 cells and their tumorigenic counterpart WB-ras for a direct comparison of non-tumorigenic and tumorigenic cells from the same origin. Viability after treatments strongly depended on cell type and applied field strength. Notably, tumorigenic WB-ras cells responded more sensitive to the respective treatments than non-tumorigenic WB-F344 cells. More cells were killed when plasma-treated medium was applied first in combination with treatments with 100-μs PEFs. For the reversed treatment order, i.e. application of PEFs first, the combination with 100-ns PEFs resulted in a stimulating effect for non-tumorigenic but not for tumorigenic cells. The results suggest that other mechanisms, besides simple pore formation, contributed to the mutually reinforcing effects of the two methods.