Search Results

Now showing 1 - 4 of 4
  • Item
    L-(+)-Lactic Acid from Reed: Comparing Various Resources for the Nutrient Provision of B. coagulans
    (Basel : MDPI, 2020) Schroedter, Linda; Schneider, Roland; Remus, Lisa; Venus, Joachim
    Biotechnological production of lactic acid (LA) is based on the so-called first generation feedstocks, meaning sugars derived from food and feed crops such as corn, sugarcane and cassava. The aim of this study was to exploit the potential of a second generation resource: Common reed (Phragmites australis) is a powerfully reproducing sweet grass which grows in wetlands and creates vast monocultural populations. This lignocellulose biomass bears the possibility to be refined to value-added products, without competing with agro industrial land. Besides utilizing reed as a renewable and inexpensive substrate, low-cost nutritional supplementation was analyzed for the fermentation of thermophilic Bacillus coagulans. Various nutritional sources such as baker’s and brewer’s yeast, lucerne green juice and tryptone were investigated for the replacement of yeast extract. The structure of the lignocellulosic material was tackled by chemical treatment (1% NaOH) and enzymatic hydrolysis (Cellic® CTec2). B. coagulans DSM ID 14-300 was employed for the homofermentative conversion of the released hexose and pentose sugars to polymerizable L-(+)-LA of over 99.5% optical purity. The addition of autolyzed baker’s yeast led to the best results of fermentation, enabling an LA titer of 28.3 g L−1 and a yield of 91.6%.
  • Item
    Integration of Solid State and Submerged Fermentations for the Valorization of Organic Municipal Solid Waste
    (Basel : MDPI, 2021) Martău, Gheorghe-Adrian; Unger, Peter; Schneider, Roland; Venus, Joachim; Vodnar, Dan Cristian; López-Gómez, José Pablo
    Solid state fermentation (SsF) is recognized as a suitable process for the production of enzymes using organic residues as substrates. However, only a few studies have integrated an evaluation of the feasibility of applying enzymes produced by SsF into subsequent hydrolyses followed by the production of target compounds, e.g., lactic acid (LA), through submerged-liquid fermentations (SmF). In this study, wheat bran (WB) was used as the substrate for the production of enzymes via SsF by Aspergillus awamori DSM No. 63272. Following optimization, cellulase and glucoamylase activities were 73.63 ± 5.47 FPU/gds and 107.10 ± 2.63 U/gdb after 7 days and 5 days of fermentation, respectively. Enzymes were then used for the hydrolysis of the organic fraction of municipal solid waste (OFMSW). During hydrolysis, glucose increased considerably with a final value of 19.77 ± 1.56 g/L. Subsequently, hydrolysates were fermented in SmF by Bacillus coagulans A166 increasing the LA concentration by 15.59 g/L. The data reported in this study provides an example of how SsF and SmF technologies can be combined for the valorization of WB and OFMSW.
  • Item
    Pilot Scale for Production and Purification of Lactic Acid from Ceratonia siliqua L. (Carob) Bagasse
    (Basel : MDPI, 2022) Azaizeh, Hassan; Abu Tayeh, Hiba Nazmi; Schneider, Roland; Venus, Joachim
    The bioconversion of lignocellulose and organic waste bagasse to lactic acid (LA) is an important alternative process requiring valorization as a potentially viable method in the production of pure LA, to be utilized for various purposes. Carob (Ceratonia siliqua L.) biomass was used for the production of LA, using a thermophilic Bacillus coagulans isolate, cultivated in a batch pilot scale of 35 L fermenters without yeast extract supplementation, and operated for 50 h. During the fermentation process, most of the degradable sugar was consumed within 35 h and resulted in the production of 46.9 g/L LA, with a calculated LA yield of 0.72 g/g sugars and productivity at the log phase of 1.69 g/L/h. The use of LA for different industrial applications requires high purity; therefore, a downstream process (DSP) consisting of different purification stages was used, enabling us to reach up to 99.9% (w/w) product purity, which indicates that the process was very effective. The overall almost pure L-LA yield of the DSP was 56%, which indicates that a considerable amount of LA (46%) was lost during the different DSP stages. This is the first study in which carob biomass bagasse has been tested on a pilot scale for LA production, showing the industrial feasibility of the fermentation process.
  • Item
    Biorefinery Concept Employing Bacillus coagulans: LX-Lignin and L-(+)-Lactic Acid from Lignocellulose
    (Basel : MDPI, 2021) Schroedter, Linda; Streffer, Friedrich; Streffer, Katrin; Unger, Peter; Venus, Joachim
    A new biorefinery concept is proposed that integrates the novel LX-Pretreatment with the fermentative production of L-(+)-lactic acid. Lignocellulose was chosen as a substrate that does not compete with the provision of food or feed. Furthermore, it contains lignin, a promising new chemical building material which is the largest renewable source for aromatic compounds. Two substrates were investigated: rye straw (RS) as a residue from agriculture, as well as the fibrous digestate of an anaerobic biogas plant operated with energy corn (DCS). Besides the prior production of biogas from energy corn, chemically exploitable LX-Lignin was produced from both sources, creating a product with a low carbohydrate and ash content (90.3% and 88.2% of acid insoluble lignin). Regarding the cellulose fraction of the biomass, enzymatic hydrolysis and fermentation experiments were conducted, comparing a separate (SHF), simultaneous (SSF) and prehydrolyzed simultaneous saccharification and fermentation (PSSF) approach. For this purpose, thermophilic B. coagulans 14-300 was utilized, reaching 38.0 g L−1 LA in 32 h SSF from pretreated RS and 18.3 g L−1 LA in 30 h PSSF from pretreated DCS with optical purities of 99%.