Search Results

Now showing 1 - 3 of 3
  • Item
    Characterization of Bathyarchaeota genomes assembled from metagenomes of biofilms residing in mesophilic and thermophilic biogas reactors
    (London : BioMed Central Ltd., 2018) Maus, I.; Rumming, M.; Bergmann, I.; Heeg, K.; Pohl, M.; Nettmann, E.; Jaenicke, S.; Blom, J.; Pühler, A.; Schlüter, A.; Sczyrba, A.; Klocke, M.
    Background: Previous studies on the Miscellaneous Crenarchaeota Group, recently assigned to the novel archaeal phylum Bathyarchaeota, reported on the dominance of these Archaea within the anaerobic carbohydrate cycle performed by the deep marine biosphere. For the first time, members of this phylum were identified also in mesophilic and thermophilic biogas-forming biofilms and characterized in detail. Results: Metagenome shotgun libraries of biofilm microbiomes were sequenced using the Illumina MiSeq system. Taxonomic classification revealed that between 0.1 and 2% of all classified sequences were assigned to Bathyarchaeota. Individual metagenome assemblies followed by genome binning resulted in the reconstruction of five metagenome-assembled genomes (MAGs) of Bathyarchaeota. MAGs were estimated to be 65-92% complete, ranging in their genome sizes from 1.1 to 2.0 Mb. Phylogenetic classification based on core gene sets confirmed their placement within the phylum Bathyarchaeota clustering as a separate group diverging from most of the recently known Bathyarchaeota clusters. The genetic repertoire of these MAGs indicated an energy metabolism based on carbohydrate and amino acid fermentation featuring the potential for extracellular hydrolysis of cellulose, cellobiose as well as proteins. In addition, corresponding transporter systems were identified. Furthermore, genes encoding enzymes for the utilization of carbon monoxide and/or carbon dioxide via the Wood-Ljungdahl pathway were detected. Conclusions: For the members of Bathyarchaeota detected in the biofilm microbiomes, a hydrolytic lifestyle is proposed. This is the first study indicating that Bathyarchaeota members contribute presumably to hydrolysis and subsequent fermentation of organic substrates within biotechnological biogas production processes.
  • Item
    Draft Genome Sequence of a New Oscillospiraceae Bacterium Isolated from Anaerobic Digestion of Biomass
    (Washington, DC : American Society for Microbiology, 2020) Pascual, Javier; Hahnke, Sarah; Abendroth, Christian; Langer, Thomas; Ramm, Patrice; Klocke, Michael; Luschnig, Olaf; Porcar, Manuel
    Here, we present the genome sequence and annotation of the novel bacterial strain HV4-5-C5C, which may represent a new genus within the family Oscillospiraceae (order Eubacteriales). This strain is a potential keystone species in the hydrolysis of complex polymers during anaerobic digestion of biomass. © 2020 Pascual et al.
  • Item
    Complete genome sequence of a new Bacteroidaceae bacterium isolated from anaerobic biomass digestion
    (Washington, DC : American Society for Microbiology, 2020) Hahnke, Sarah; Abendroth, Christian; Pascual, Javier; Langer, Thomas; Codoñer, Francisco M.; Ramm, Patrice; Klocke, Michael; Luschnig, Olaf; Porcare, Manuel
    Here, we present the genome sequence and annotation of HV4-6-C5C, a bacterial strain isolated from a mesophilic two-stage laboratory-scale leach bed biogas reactor system. Strain HV4-6-C5C may represent a new genus of the family Bacteroidaceae and may have a key role in acidogenesis and acetogenesis steps during anaerobic biomass digestion. © 2019 Hahnke et al.