Search Results

Now showing 1 - 10 of 16
Loading...
Thumbnail Image
Item

Nd─Nd Bond in Ih and D5h Cage Isomers of Nd2@C80 Stabilized by Electrophilic CF3 Addition

2023, Yang, Wei, Velkos, Georgios, Rosenkranz, Marco, Schiemenz, Sandra, Liu, Fupin, Popov, Alexey A.

Synthesis of molecular compounds with metal–metal bonds between 4f elements is recognized as one of the fascinating milestones in lanthanide metallochemistry. The main focus of such studies is on heavy lanthanides due to the interest in their magnetism, while bonding between light lanthanides remains unexplored. In this work, the Nd─Nd bonding in Nd-dimetallofullerenes as a case study of metal–metal bonding between early lanthanides is demonstrated. Combined experimental and computational study proves that pristine Nd2@C80 has an open shell structure with a single electron occupying the Nd─Nd bonding orbital. Nd2@C80 is stabilized by a one-electron reduction and further by the electrophilic CF3 addition to [Nd2@C80]−. Single-crystal X-ray diffraction reveals the formation of two Nd2@C80(CF3) isomers with D5h-C80 and Ih-C80 carbon cages, both featuring a single-electron Nd─Nd bond with the length of 3.78–3.79 Å. The mutual influence of the exohedral CF3 group and endohedral metal dimer in determining the molecular structure of the adducts is analyzed. Unlike Tb or Dy analogs, which are strong single-molecule magnets with high blocking temperature of magnetization, the slow relaxation of magnetization in Nd2@Ih-C80(CF3) is detectable via out-of-phase magnetic susceptibility only below 3 K and in the presence of magnetic field.

Loading...
Thumbnail Image
Item

Calorimetric evidence for two phase transitions in Ba1−xKxFe2As2 with fermion pairing and quadrupling states

2023, Shipulin, Ilya, Stegani, Nadia, Maccari, Ilaria, Kihou, Kunihiro, Lee, Chul-Ho, Hu, Quanxin, Zheng, Yu, Yang, Fazhi, Li, Yongwei, Yim, Chi-Ming, Hühne, Ruben, Klauss, Hans-Henning, Putti, Marina, Caglieris, Federico, Babaev, Egor, Grinenko, Vadim

Materials that break multiple symmetries allow the formation of four-fermion condensates above the superconducting critical temperature (T c). Such states can be stabilized by phase fluctuations. Recently, a fermionic quadrupling condensate that breaks the Z 2 time-reversal symmetry was reported in Ba1−xKxFe2As2. A phase transition to the new state of matter should be accompanied by a specific heat anomaly at the critical temperature where Z 2 time-reversal symmetry is broken (TcZ2>Tc). Here, we report on detecting two anomalies in the specific heat of Ba1−xKxFe2As2 at zero magnetic field. The anomaly at the higher temperature is accompanied by the appearance of a spontaneous Nernst effect, indicating the breakdown of Z 2 symmetry. The second anomaly at the lower temperature coincides with the transition to a zero-resistance state, indicating the onset of superconductivity. Our data provide the first example of the appearance of a specific heat anomaly above the superconducting phase transition associated with the broken time-reversal symmetry due to the formation of the novel fermion order.

Loading...
Thumbnail Image
Item

Resonating holes vs molecular spin-orbit coupled states in group-5 lacunar spinels

2023, Petersen, Thorben, Bhattacharyya, Pritam, Rößler, Ulrich K., Hozoi, Liviu

The valence electronic structure of magnetic centers is one of the factors that determines the characteristics of a magnet. This may refer to orbital degeneracy, as for jeff = 1/2 Kitaev magnets, or near-degeneracy, e.g., involving the third and fourth shells in cuprate superconductors. Here we explore the inner structure of magnetic moments in group-5 lacunar spinels, fascinating materials featuring multisite magnetic units in the form of tetrahedral tetramers. Our quantum chemical analysis reveals a very colorful landscape, much richer than the single-electron, single-configuration description applied so far to all group-5 GaM4X8 chalcogenides, and clarifies the basic multiorbital correlations on M4 tetrahedral clusters: while for V strong correlations yield a wave-function that can be well described in terms of four V4+V3+V3+V3+ resonant valence structures, for Nb and Ta a picture of dressed molecular-orbital jeff = 3/2 entities is more appropriate. These internal degrees of freedom likely shape vibronic couplings, phase transitions, and the magneto-electric properties in each of these systems.

Loading...
Thumbnail Image
Item

Directed exciton transport highways in organic semiconductors

2023, Müller, Kai, Schellhammer, Karl S., Gräßler, Nico, Debnath, Bipasha, Liu, Fupin, Krupskaya, Yulia, Leo, Karl, Knupfer, Martin, Ortmann, Frank

Exciton bandwidths and exciton transport are difficult to control by material design. We showcase the intriguing excitonic properties in an organic semiconductor material with specifically tailored functional groups, in which extremely broad exciton bands in the near-infrared-visible part of the electromagnetic spectrum are observed by electron energy loss spectroscopy and theoretically explained by a close contact between tightly packing molecules and by their strong interactions. This is induced by the donor–acceptor type molecular structure and its resulting crystal packing, which induces a remarkable anisotropy that should lead to a strongly directed transport of excitons. The observations and detailed understanding of the results yield blueprints for the design of molecular structures in which similar molecular features might be used to further explore the tunability of excitonic bands and pave a way for organic materials with strongly enhanced transport and built-in control of the propagation direction.

Loading...
Thumbnail Image
Item

Elucidating Structure Formation in Highly Oriented Triple Cation Perovskite Films

2023, Telschow, Oscar, Scheffczyk, Niels, Hinderhofer, Alexander, Merten, Lena, Kneschaurek, Ekaterina, Bertram, Florian, Zhou, Qi, Löffler, Markus, Schreiber, Frank, Paulus, Fabian, Vaynzof, Yana

Metal halide perovskites are an emerging class of crystalline semiconductors of great interest for application in optoelectronics. Their properties are dictated not only by their composition, but also by their crystalline structure and microstructure. While significant efforts are dedicated to the development of strategies for microstructural control, significantly less is known about the processes that govern the formation of their crystalline structure in thin films, in particular in the context of crystalline orientation. This work investigates the formation of highly oriented triple cation perovskite films fabricated by utilizing a range of alcohols as an antisolvent. Examining the film formation by in situ grazing-incidence wide-angle X-ray scattering reveals the presence of a short-lived highly oriented crystalline intermediate, which is identified as FAI-PbI2-xDMSO. The intermediate phase templates the crystallization of the perovskite layer, resulting in highly oriented perovskite layers. The formation of this dimethylsulfoxide (DMSO) containing intermediate is triggered by the selective removal of N,N-dimethylformamide (DMF) when alcohols are used as an antisolvent, consequently leading to differing degrees of orientation depending on the antisolvent properties. Finally, this work demonstrates that photovoltaic devices fabricated from the highly oriented films, are superior to those with a random polycrystalline structure in terms of both performance and stability.

Loading...
Thumbnail Image
Item

Strong and ductile high temperature soft magnets through Widmanstätten precipitates

2023, Han, Liuliu, Maccari, Fernando, Soldatov, Ivan, Peter, Nicolas J., Souza Filho, Isnaldi R., Schäfer, Rudolf, Gutfleisch, Oliver, Li, Zhiming, Raabe, Dierk

Fast growth of sustainable energy production requires massive electrification of transport, industry and households, with electrical motors as key components. These need soft magnets with high saturation magnetization, mechanical strength, and thermal stability to operate efficiently and safely. Reconciling these properties in one material is challenging because thermally-stable microstructures for strength increase conflict with magnetic performance. Here, we present a material concept that combines thermal stability, soft magnetic response, and high mechanical strength. The strong and ductile soft ferromagnet is realized as a multicomponent alloy in which precipitates with a large aspect ratio form a Widmanstätten pattern. The material shows excellent magnetic and mechanical properties at high temperatures while the reference alloy with identical composition devoid of precipitates significantly loses its magnetization and strength at identical temperatures. The work provides a new avenue to develop soft magnets for high-temperature applications, enabling efficient use of sustainable electrical energy under harsh operating conditions.

Loading...
Thumbnail Image
Item

Is there more than one stickiness criterion?

2022, Wang, Anle, Müser, Martin H.

Adhesion between an elastic body and a smooth, rigid substrate can lead to large tensile stresses between them. However, most macroscopic objects are microscopically rough, which strongly suppresses adhesion. A fierce debate has unfolded recently as to whether local or global parameters determine the crossover between small and large adhesion. Here, we report simulations revealing that the dependence of the pull-off force Fn on the surface energy γ does not only have two regimes of high and low adhesion but up to four regimes. They are related to contacts, which at the moment of rupture consist of (i) the last individual Hertzian-shaped contact, in which is linear in γ, (ii) a last meso-scale, individual patches with super-linear scaling, (iii) many isolated contact patches with extremely strong scaling, and (iv) a dominating largest contact patch, for which the pull-off stress is no longer negligible compared to the maximum, microscopic pull-off stress. Regime (iii) can be seen as a transition domain. It is located near the point where the surface energy is half the elastic energy per unit area in conformal contact. A criterion for the transition between regimes (i) and (ii) appears difficult to grasp. [Figure not available: see fulltext.].

Loading...
Thumbnail Image
Item

Evolutionary design of explainable algorithms for biomedical image segmentation

2023, Cortacero, Kévin, McKenzie, Brienne, Müller, Sabina, Khazen, Roxana, Lafouresse, Fanny, Corsaut, Gaëlle, Van Acker, Nathalie, Frenois, François-Xavier, Lamant, Laurence, Meyer, Nicolas, Vergier, Béatrice, Wilson, Dennis G., Luga, Hervé, Staufer, Oskar, Dustin, Michael L., Valitutti, Salvatore, Cussat-Blanc, Sylvain

An unresolved issue in contemporary biomedicine is the overwhelming number and diversity of complex images that require annotation, analysis and interpretation. Recent advances in Deep Learning have revolutionized the field of computer vision, creating algorithms that compete with human experts in image segmentation tasks. However, these frameworks require large human-annotated datasets for training and the resulting “black box” models are difficult to interpret. In this study, we introduce Kartezio, a modular Cartesian Genetic Programming-based computational strategy that generates fully transparent and easily interpretable image processing pipelines by iteratively assembling and parameterizing computer vision functions. The pipelines thus generated exhibit comparable precision to state-of-the-art Deep Learning approaches on instance segmentation tasks, while requiring drastically smaller training datasets. This Few-Shot Learning method confers tremendous flexibility, speed, and functionality to this approach. We then deploy Kartezio to solve a series of semantic and instance segmentation problems, and demonstrate its utility across diverse images ranging from multiplexed tissue histopathology images to high resolution microscopy images. While the flexibility, robustness and practical utility of Kartezio make this fully explicable evolutionary designer a potential game-changer in the field of biomedical image processing, Kartezio remains complementary and potentially auxiliary to mainstream Deep Learning approaches.

Loading...
Thumbnail Image
Item

Reversibly growing crosslinked polymers with programmable sizes and properties

2023, Zhou, Xiaozhuang, Zheng, Yijun, Zhang, Haohui, Yang, Li, Cui, Yubo, Krishnan, Baiju P., Dong, Shihua, Aizenberg, Michael, Xiong, Xinhong, Hu, Yuhang, Aizenberg, Joanna, Cui, Jiaxi

Growth constitutes a powerful method to post-modulate materials’ structures and functions without compromising their mechanical performance for sustainable use, but the process is irreversible. To address this issue, we here report a growing-degrowing strategy that enables thermosetting materials to either absorb or release components for continuously changing their sizes, shapes, compositions, and a set of properties simultaneously. The strategy is based on the monomer-polymer equilibrium of networks in which supplying or removing small polymerizable components would drive the networks toward expansion or contraction. Using acid-catalyzed equilibration of siloxane as an example, we demonstrate that the size and mechanical properties of the resulting silicone materials can be significantly or finely tuned in both directions of growth and decomposition. The equilibration can be turned off to yield stable products or reactivated again. During the degrowing-growing circle, material structures are selectively varied either uniformly or heterogeneously, by the availability of fillers. Our strategy endows the materials with many appealing capabilities including environment adaptivity, self-healing, and switchability of surface morphologies, shapes, and optical properties. Since monomer-polymer equilibration exists in many polymers, we envision the expansion of the presented strategy to various systems for many applications.

Loading...
Thumbnail Image
Item

Influence of structural depth of laser-patterned steel surfaces on the solid lubricity of carbon nanoparticle coatings

2022, Maclucas, Timothy, Daut, Lukas, Grützmacher, Philipp, Guitar, Maria Agustina, Presser, Volker, Gachot, Carsten, Suarez, Sebastian, Mücklich, Frank

Carbon nanoparticle coatings on laser-patterned stainless-steel surfaces present a solid lubrication system where the pattern’s recessions act as lubricant-retaining reservoirs. This study investigates the influence of the structural depth of line patterns coated with multi-walled carbon nanotubes (CNTs) and carbon onions (COs) on their respective potential to reduce friction and wear. Direct laser interference patterning (DLIP) with a pulse duration of 12 ps is used to create line patterns with three different structural depths at a periodicity of 3.5 µm on AISI 304 steel platelets. Subsequently, electrophoretic deposition (EPD) is applied to form homogeneous carbon nanoparticle coatings on the patterned platelets. Tribological ball-on-disc experiments are conducted on the as-described surfaces with an alumina counter body at a load of 100 mN. The results show that the shallower the coated structure, the lower its coefficient of friction (COF), regardless of the particle type. Thereby, with a minimum of just below 0.20, CNTs reach lower COF values than COs over most of the testing period. The resulting wear tracks are characterized by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. During friction testing, the CNTs remain in contact, and the immediate proximity, whereas the CO coating is largely removed. Regardless of structural depth, no oxidation occurs on CNT-coated surfaces, whereas minor oxidation is detected on CO-coated wear tracks. [Figure not available: see fulltext.].