Search Results

Now showing 1 - 4 of 4
  • Item
    Encapsulation of bacteria in bilayer Pluronic thin film hydrogels: A safe format for engineered living materials
    (Amsterdam : Elsevier, 2023) Bhusari, Shardul; Kim, Juhyun; Polizzi, Karen; Sankaran, Shrikrishnan; del Campo, Aránzazu
    In engineered living materials (ELMs) non-living matrices encapsulate microorganisms to acquire capabilities like sensing or biosynthesis. The confinement of the organisms to the matrix and the prevention of overgrowth and escape during the lifetime of the material is necessary for the application of ELMs into real devices. In this study, a bilayer thin film hydrogel of Pluronic F127 and Pluronic F127 acrylate polymers supported on a solid substrate is introduced. The inner hydrogel layer contains genetically engineered bacteria and supports their growth, while the outer layer acts as an envelope and does not allow leakage of the living organisms outside of the film for at least 15 days. Due to the flat and transparent nature of the construct, the thin layer is suited for microscopy and spectroscopy-based analyses. The composition and properties of the inner and outer layer are adjusted independently to fulfil viability and confinement requirements. We demonstrate that bacterial growth and light-induced protein production are possible in the inner layer and their extent is influenced by the crosslinking degree of the used hydrogel. Bacteria inside the hydrogel are viable long term, they can act as lactate-sensors and remain active after storage in phosphate buffer at room temperature for at least 3 weeks. The versatility of bilayer bacteria thin-films is attractive for fundamental studies and for the development of application-oriented ELMs.
  • Item
    Dynamics, cation conformation and rotamers in guanidinium ionic liquids with ether groups
    (Amsterdam : Elsevier, 2023) Rauber, Daniel; Philippi, Frederik; Morgenstern, Bernd; Zapp, Josef; Kuttich, Björn; Kraus, Tobias; Welton, Tom; Hempelmann, Rolf; Kay, Christopher W.M.
    Ionic liquids are modern materials with a broad range of applications, including electrochemical devices, the exploitation of sustainable resources and chemical processing. Expanding the chemical space to include novel ion classes allows for the elucidation of novel structure-property relationships and fine tuning for specific applications. We prepared a set of ionic liquids based on the sparsely investigated pentamethyl guanidinium cation with a 2-ethoxy-ethyl side chain in combination with a series of frequently used anions. The resulting properties are compared to a cation with a pentyl side chain lacking ether functionalization. We measured the thermal transitions and transport properties to estimate the performance and trends of this cation class. The samples with imide-type anions form liquids at ambient temperature, and show good transport properties, comparable to imidazolium or ammonium ionic liquids. Despite the dynamics being significantly accelerated, ether functionalization of the cation favors the formation of crystalline solids. Single crystal structure analysis, ab initio calculations and variable temperature nuclear magnetic resonance measurements (VT-NMR) revealed that cation conformations for the ether- and alkyl-chain-substituted are different in both the solid and liquid states. While ether containing cations adopt compact, curled structures, those with pentyl side chains are linear. The Eyring plot revealed that the curled conformation is accompanied by a higher activation energy for rotation around the carbon-nitrogen bonds, due to the coordination of the ether chain as observed by VT-NMR.
  • Item
    Impact of mucus modulation by N-acetylcysteine on nanoparticle toxicity
    (Amsterdam : Elsevier, 2023) Meziu, Enkeleda; Shehu, Kristela; Koch, Marcus; Schneider, Marc; Kraegeloh, Annette
    Human respiratory mucus is a biological hydrogel that forms a protective barrier for the underlying epithelium. Modulation of the mucus layer has been employed as a strategy to enhance transmucosal drug carrier transport. However, a drawback of this strategy is a potential reduction of the mucus barrier properties, in particular in situations with an increased exposure to particles. In this study, we investigated the impact of mucus modulation on its protective role. In vitro mucus was produced by Calu-3 cells, cultivated at the air-liquid interface for 21 days and used for further testing as formed on top of the cells. Analysis of confocal 3D imaging data revealed that after 21 days Calu-3 cells secrete a mucus layer with a thickness of 24 ± 6 μm. Mucus appeared to restrict penetration of 500 nm carboxyl-modified polystyrene particles to the upper 5–10 μm of the layer. Furthermore, a mucus modulation protocol using aerosolized N-acetylcysteine (NAC) was developed. This treatment enhanced the penetration of particles through the mucus down to deeper layers by means of the mucolytic action of NAC. These findings were supported by cytotoxicity data, indicating that intact mucus protects the underlying epithelium from particle-induced effects on membrane integrity. The impact of NAC treatment on the protective properties of mucus was probed by using 50 and 100 nm amine-modified and 50 nm carboxyl-modified polystyrene nanoparticles, respectively. Cytotoxicity was only induced by the amine-modified particles in combination with NAC treatment, implying a reduced protective function of modulated mucus. Overall, our data emphasize the importance of integrating an assessment of the protective function of mucus into the development of therapy approaches involving mucus modulation.
  • Item
    Solving the puzzle of hierarchical martensitic microstructures in NiTi by (111)-oriented epitaxial films
    (Amsterdam : Elsevier, 2023) Lünser, Klara; Undisz, Andreas; Wagner, Martin F.-X.; Nielsch, Kornelius; Fähler, Sebastian
    The martensitic microstructure decides on the functional properties of shape memory alloys. However, for the most commonly used alloy, NiTi, it is still unclear how its microstructure is built up because the analysis is hampered by grain boundaries of polycrystalline samples. Here, we eliminate grain boundaries by using epitaxially grown films in (111)B2 orientation. By combining scale-bridging microscopy with integral inverse pole figures, we solve the puzzle of the hierarchical martensitic microstructure. We identify two martensite clusters as building blocks and three kinds of twin boundaries. Nesting them at different length scales explains why habit plane variants with ⟨011⟩B19' twin boundaries and {942} habit planes are dominant; but also some incompatible interfaces occur. Though the observed hierarchical microstructure agrees with the phenomenological theory of martensite, the transformation path decides which microstructure forms. The combination of local and global measurements with theory allows solving the scale bridging 3D puzzle of the martensitic microstructure in NiTi exemplarily for epitaxial films.