Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

A Review on Passive and Integrated Near-Field Microwave Biosensors

2017, Guha, Subhajit, Jamal, Farabi Ibne, Wenger, Christian

In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper.

Loading...
Thumbnail Image
Item

Plasma enhanced complete oxidation of ultrathin epitaxial praseodymia films on Si(111)

2015, Kuschel, Olga, Dieck, Florian, Wilkens, Henrik, Gevers, Sebastian, Rodewald, Jari, Otte, Christian, Zoellner, Marvin Hartwig, Niu, Gang, Schroeder, Thomas, Wollschläger, Joachim

Praseodymia films have been exposed to oxygen plasma at room temperature after deposition on Si(111) via molecular beam epitaxy. Different parameters as film thickness, exposure time and flux during plasma treatment have been varied to study their influence on the oxygen plasma oxidation process. The surface near regions have been investigated by means of X-ray photoelectron spectroscopy showing that the plasma treatment transforms the stoichiometry of the films from Pr2O3 to PrO2. Closer inspection of the bulk properties of the films by means of synchrotron radiation based X-ray reflectometry and diffraction confirms this transformation if the films are thicker than some critical thickness of 6 nm. The layer distance of these films is extremely small verifying the completeness of the plasma oxidation process. Thinner films, however, cannot be transformed completely. For all films, less oxidized very thin interlayers are detected by these experimental techniques.

Loading...
Thumbnail Image
Item

Comparative Study of Nano-Slot Silicon Waveguides Covered by Dye Doped and Undoped Polymer Cladding

2018, Bondarenko, Siegfried, Villringer, Claus, Steglich, Patrick

Nonlinear optical dyes doped in optical polymer matrices are widely used for electro-optical devices. Linear optical properties change with dye concentration, which leads to a change in modal properties, especially in nano-structured integrated waveguides such as silicon slot-waveguides. Here, we investigate the influence of a nonlinear optical dye on the performance of a silicon-organic hybrid slot-waveguide. A simulation study of the modal and optical confinement properties is carried out and dependence of the structural parameters of the slot-waveguide and the organic cladding material is taken into account. As cladding material, a guest-host polymer system is employed comprising the nonlinear optical dye Disperse Red 1 (DR1) doped in a poly[methyl methacrylate] (PMMA) matrix. The refractive indices of doped and undoped PMMA were deduced from ellipsometric data. We present a guideline for an optimized slot-waveguide design for the fabrication in silicon-on-insulator technology giving rise to scalable, high-performance integrated electro-optical modulators.

Loading...
Thumbnail Image
Item

Experiments on MEMS Integration in 0.25 μm CMOS Process

2018, Michalik, Piotr, Fernández, Daniel, Wietstruck, Matthias, Kaynak, Mehmet, Madrenas, Jordi

In this paper, we share our practical experience gained during the development of CMOS-MEMS (Complementary Metal-Oxide Semiconductor Micro Electro Mechanical Systems) devices in IHP SG25 technology. The experimental prototyping process is illustrated with examples of three CMOS-MEMS chips and starts from rough process exploration and characterization, followed by the definition of the useful MEMS design space to finally reach CMOS-MEMS devices with inertial mass up to 4.3 μg and resonance frequency down to 4.35 kHz. Furthermore, the presented design techniques help to avoid several structural and reliability issues such as layer delamination, device stiction, passivation fracture or device cracking due to stress.

Loading...
Thumbnail Image
Item

Design and Fabrication of a BiCMOS Dielectric Sensor for Viscosity Measurements: A Possible Solution for Early Detection of COPD

2018, Soltani Zarrin, Pouya, Jamal, Farabi Ibne, Guha, Subhajit, Wessel, Jan, Kissinger, Dietmar, Wenger, Christian

The viscosity variation of sputum is a common symptom of the progression of Chronic Obstructive Pulmonary Disease (COPD). Since the hydration of the sputum defines its viscosity level, dielectric sensors could be used for the characterization of sputum samples collected from patients for early diagnosis of COPD. In this work, a CMOS-based dielectric sensor for the real-time monitoring of sputum viscosity was designed and fabricated. A proper packaging for the ESD-protection and short-circuit prevention of the sensor was developed. The performance evaluation results show that the radio frequency sensor is capable of measuring dielectric constant of biofluids with an accuracy of 4.17%. Integration of this sensor into a portable system will result in a hand-held device capable of measuring viscosity of sputum samples of COPD-patients for diagnostic purposes.

Loading...
Thumbnail Image
Item

Current Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode

2018, Alvarado Chavarin, Carlos, Strobel, Carsten, Kitzmann, Julia, Di Bartolomeo, Antonio, Lukosius, Mindaugas, Albert, Matthias, Bartha, Johann Wolfgang, Wenger, Christian

Graphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μS was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.

Loading...
Thumbnail Image
Item

Prolonged Corrosion Stability of a Microchip Sensor Implant during In Vivo Exposure

2018, Glogener, Paul, Krause, Michael, Katzer, Jens, Schubert, Markus A., Birkholz, Mario, Bellmann, Olaf, Kröger-Koch, Claudia, Hammon, Harald M., Metges, Cornelia C., Welsch, Christine, Ruff, Roman, Hoffmann, Klaus P.

A microelectronic biosensor was subjected to in vivo exposure by implanting it in the vicinity of m. trapezii (Trapezius muscle) from cattle. The implant is intended for the continuous monitoring of glucose levels, and the study aimed at evaluating the biostability of exposed semiconductor surfaces. The sensor chip was a microelectromechanical system (MEMS) prepared using 0.25 µm complementary metal–oxide–semiconductor CMOS/BiCMOS technology. Sensing is based on the principle of affinity viscometry with a sensoric assay, which is separated by a semipermeable membrane from the tissue. Outer dimensions of the otherwise hermetically sealed biosensor system were 39 × 49 × 16 mm. The test system was implanted into cattle in a subcutaneous position without running it. After 17 months, the device was explanted and analyzed by comparing it with unexposed chips and systems. Investigations focused on the MEMS chip using SEM, TEM, and elemental analysis by EDX mapping. The sensor chip turned out to be uncorroded and no diminishing of the topmost passivation layer could be determined, which contrasts remarkably with previous results on CMOS biosensors. The negligible corrosive attack is understood to be a side effect of the semipermeable membrane separating the assay from the tissue. It is concluded that the separation has enabled a prolonged biostability of the chip, which will be of relevance for biosensor implants in general.

Loading...
Thumbnail Image
Item

Modeling the shape of ions in pyrite-type crystals

2014, Birkholz, Mario

The geometrical shape of ions in crystals and the concept of ionic radii are re-considered. The re-investigation is motivated by the fact that a spherical modelling is justified for p valence shell ions on cubic lattice sites only. For the majority of point groups, however, the ionic radius must be assumed to be an anisotropic quantity. An appropriate modelling of p valence ions then has to be performed by ellipsoids. The approach is tested for pyrite-structured dichalcogenides MX2, with chalcogen ions X = O, S, Se and Te. The latter are found to exhibit the shape of ellipsoids being compressed along the <111> symmetry axes, with two radii r

Loading...
Thumbnail Image
Item

Continuously operating biosensor and its integration into a hermetically sealed medical implant

2016, Birkholz, Mario, Glogener, Paul, Glös, Franziska, Basmer, Thomas, Theuer, Lorenz

An integration concept for an implantable biosensor for the continuous monitoring of blood sugar levels is presented. The system architecture is based on technical modules used in cardiovascular implants in order to minimize legal certification efforts for its perspective usage in medical applications. The sensor chip operates via the principle of affinity viscometry, which is realized by a fully embedded biomedical microelectromechanical systems (BioMEMS) prepared in 0.25-µm complementary metal–oxide–semiconductor (CMOS)/BiCMOS technology. Communication with a base station is established in the 402–405 MHz band used for medical implant communication services (MICS). The implant shall operate within the interstitial tissue, and the hermetical sealing of the electronic system against interaction with the body fluid is established using titanium housing. Only the sensor chip and the antenna are encapsulated in an epoxy header closely connected to the metallic housing. The study demonstrates that biosensor implants for the sensing of low-molecular-weight metabolites in the interstitial may successfully rely on components already established in cardiovascular implantology.

Loading...
Thumbnail Image
Item

An embedded sensor node microcontroller with crypto-processors

2016, Pani´c, Goran, Stecklina, Oliver, Stamenkovi´c, Zoran

Wireless sensor network applications range from industrial automation and control, agricultural and environmental protection, to surveillance and medicine. In most applications, data are highly sensitive and must be protected from any type of attack and abuse. Security challenges in wireless sensor networks are mainly defined by the power and computing resources of sensor devices, memory size, quality of radio channels and susceptibility to physical capture. In this article, an embedded sensor node microcontroller designed to support sensor network applications with severe security demands is presented. It features a low power 16-bitprocessor core supported by a number of hardware accelerators designed to perform complex operations required by advanced crypto algorithms. The microcontroller integrates an embedded Flash and an 8-channel 12-bit analog-to-digital converter making it a good solution for low-power sensor nodes. The article discusses the most important security topics in wireless sensor networks and presents the architecture of the proposed hardware solution. Furthermore, it gives details on the chip implementation, verification and hardware evaluation. Finally, the chip power dissipation and performance figures are estimated and analyzed.