Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

High-resolution characterization of the forbidden Si 200 and Si 222 reflections

2015, Zaumseil, P.

The occurrence of the basis-forbidden Si 200 and Si 222 reflections in specular X-ray diffraction !–2 scans is investigated in detail as a function of the inplane sample orientation. This is done for two different diffractometer types with low and high angular divergence perpendicular to the diffraction plane. It is shown that the reflections appear for well defined conditions as a result of multiple diffraction, and not only do the obtained peaks vary in intensity but additional features like shoulders or even subpeaks may occur within a 2 range of about 2.5 . This has important consequences for the detection and verification of layer peaks in the corresponding angular range.

Loading...
Thumbnail Image
Item

X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates

2013, Zaumseil, Peter, Kozlowski, Grzegorz, Yamamoto, Yuji, Schubert, Markus Andreas, Schroeder, Thomas

On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III–V and II–VI materials.