Search Results

Now showing 1 - 2 of 2
  • Item
    Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics
    (Göttingen : Copernicus GmbH, 2009) Kawa, S.R.; Stolarski, R.S.; Newman, P.A.; Douglass, A.R.; Rex, M.; Hofmann, D.J.; Santee, M.L.; Frieler, K.
    The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate) parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O 2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl 2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS) data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007) are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen emissions and climate. Further laboratory, theoretical, and possibly atmospheric studies are needed.
  • Item
    Planetary geostrophic equations for the atmosphere with evolution of the barotropic flow
    (Amsterdam : Elsevier, 2009) Dolaptchiev, S.I.; Klein, R.
    Atmospheric phenomena such as the quasi-stationary Rossby waves, teleconnection patterns, ultralong persistent blockings and the polar/subtropical jet are characterized by planetary spatial scales, i.e. scales of the order of the earth's radius. This motivates our interest in the relevant physical processes acting on the planetary scales. Using an asymptotic approach, we systematically derive reduced model equations valid for atmospheric motions with planetary spatial scales and a temporal scale of the order of about 1 week. We assume variations of the background potential temperature comparable in magnitude with those adopted in the classical quasi-geostrophic theory. At leading order, the resulting equations include the planetary geostrophic balance. In order to apply these equations to the atmosphere, one has to prescribe a closure for the vertically averaged pressure. We present an evolution equation for this component of the pressure which was derived in a systematic way from the asymptotic analysis. Relative to the prognostic closures adopted in existing reduced-complexity planetary models, this new dynamical closure may provide for more realistic increased large-scale, long-time variability in future implementations. © 2008 Elsevier B.V. All rights reserved.