Search Results

Now showing 1 - 2 of 2
  • Item
    Intersubband Transition Engineering in the Conduction Band of Asymmetric Coupled Ge/SiGe Quantum Wells
    (Basel : MDPI, 2020) Persichetti, Luca; Montanari, Michele; Ciano, Chiara; Di Gaspare, Luciana; Ortolani, Michele; Baldassarre, Leonetta; Zoellner, Marvin; Mukherjee, Samik; Moutanabbir, Oussama; Capellini, Giovanni; Virgilio, Michele; De Seta, Monica
    n-type Ge/SiGe asymmetric coupled quantum wells represent the building block of a variety of nanoscale quantum devices, including recently proposed designs for a silicon-based THz quantum cascade laser. In this paper, we combine structural and spectroscopic experiments on 20-module superstructures, each featuring two Ge wells coupled through a Ge-rich SiGe tunnel barrier, as a function of the geometry parameters of the design and the P dopant concentration. Through a comparison of THz spectroscopic data with numerical calculations of intersubband optical absorption resonances, we demonstrated that it is possible to tune, by design, the energy and the spatial overlap of quantum confined subbands in the conduction band of the heterostructures. The high structural/interface quality of the samples and the control achieved on subband hybridization are promising starting points towards a working electrically pumped light-emitting device. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Towards the Growth of Hexagonal Boron Nitride on Ge(001)/Si Substrates by Chemical Vapor Deposition
    (Basel : MDPI, 2022) Franck, Max; Dabrowski, Jaroslaw; Schubert, Markus Andreas; Wenger, Christian; Lukosius, Mindaugas
    The growth of hexagonal boron nitride (hBN) on epitaxial Ge(001)/Si substrates via high-vacuum chemical vapor deposition from borazine is investigated for the first time in a systematic manner. The influences of the process pressure and growth temperature in the range of 10−7–10−3 mbar and 900–980 °C, respectively, are evaluated with respect to morphology, growth rate, and crystalline quality of the hBN films. At 900 °C, nanocrystalline hBN films with a lateral crystallite size of ~2–3 nm are obtained and confirmed by high-resolution transmission electron microscopy images. X-ray photoelectron spectroscopy confirms an atomic N:B ratio of 1 ± 0.1. A three-dimensional growth mode is observed by atomic force microscopy. Increasing the process pressure in the reactor mainly affects the growth rate, with only slight effects on crystalline quality and none on the principle growth mode. Growth of hBN at 980 °C increases the average crystallite size and leads to the formation of 3–10 well-oriented, vertically stacked layers of hBN on the Ge surface. Exploratory ab initio density functional theory simulations indicate that hBN edges are saturated by hydrogen, and it is proposed that partial de-saturation by H radicals produced on hot parts of the set-up is responsible for the growth.