Search Results

Now showing 1 - 10 of 25
  • Item
    Resonant terahertz light absorption by virtue of tunable hybrid interface phonon-plasmon modes in semiconductor nanoshells
    (Basel : MDPI AG, 2019) Nika, D.L.; Pokatilov, E.P.; Fomin, V.M.; Devreese, J.T.; Tempere, J.
    Metallic nanoshells have proven to be particularly versatile, with applications in biomedical imaging and surface-enhanced Raman spectroscopy. Here, we theoretically demonstrate that hybrid phonon-plasmon modes in semiconductor nanoshells offer similar advantages in the terahertz regime. We show that, depending on tm,n,nhe doping of the semiconductor shells, terahertz light absorption in these nanostructures can be resonantly enhanced due to the strong coupling between interface plasmons and phonons. A threefold to fourfold increase in the absorption peak intensity was achieved at specific values of electron concentration. Doping, as well as adapting the nanoshell radius, allowed for fine-tuning of the absorption peak frequencies.
  • Item
    Carbon nanostructures as a multi-functional platform for sensing applications
    (Basel : MDPI AG, 2018) Mendes, R.G.; Wróbel, P.S.; Bachmatiuk, A.; Sun, J.; Gemming, T.; Liu, Z.; Rümmeli, M.H.
    The various forms of carbon nanostructures are providing extraordinary new opportunities that can revolutionize the way gas sensors, electrochemical sensors and biosensors are engineered. The great potential of carbon nanostructures as a sensing platform is exciting due to their unique electrical and chemical properties, highly scalable, biocompatible and particularly interesting due to the almost infinite possibility of functionalization with a wide variety of inorganic nanostructured materials and biomolecules. This opens a whole new pallet of specificity into sensors that can be extremely sensitive, durable and that can be incorporated into the ongoing new generation of wearable technology. Within this context, carbon-based nanostructures are amongst the most promising structures to be incorporated in a multi-functional platform for sensing. The present review discusses the various 1D, 2D and 3D carbon nanostructure forms incorporated into different sensor types as well as the novel functionalization approaches that allow such multi-functionality.
  • Item
    Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144
    (Basel : MDPI AG, 2022) Singh, Shiv J.; Sturza, Mihai I.
    The discovery of iron-based superconductors (FBS) and their superconducting properties has generated huge research interest and provided a very rich physics high Tc family for fundamental and experimental studies. The 1111 (REFeAsO, RE = Rare earth) and 1144 (AEAFe4As4, AE = Ca, Eu; A = K, Rb) families are the two most important families of FBS, which offer the high Tc of 58 K and 36 K with doping and without doping, respectively. Furthermore, the crystal growth of these families is not an easy process, and a lot of efforts have been reported in this direction. However, the preparation of high-quality and suitable-sized samples is still challenging. In this short review, we will summarize the growth of materials with their superconducting properties, especially polycrystals and single crystals, for the 1111 and 1144 families, and make a short comparison between them to understand the developmental issues.
  • Item
    Syntheses, crystal structure and magnetic properties of Tl9RETe6 (RE = Ce, Sm, Gd)
    (Basel : MDPI AG, 2020) Isaeva, A.; Schönemann, R.; Doert, T.
    The three compounds Tl9RETe6 with RE = Ce, Sm, Gd were synthesized from the elements at 1020 K. Their isostructural crystal structures are ordered derivatives of the Tl5Te3 type with rare-earth metal and thallium occupying different Wyckoff positions. The structures can be understood as charge-ordered in accordance with the Zintl-Klemm concept: 9 Tl+ + RE3+ + 6 Te2-. DFT calculations for Tl9GdTe6, however, result in a low, but finite density of states at the Fermi level. Magnetic data confirm trivalent Gd, but indicate a small amount of Ce4+ in Tl9CeTe6; no indications for long-range magnetic order was found down to T = 2 K.
  • Item
    A magnetocaloric booster unit for energy-efficient air-conditioning
    (Basel : MDPI AG, 2019) Krautz, M.; Beyer, M.; Jäschke, C.; Schinke, L.; Waske, A.; Seifert, J.
    A concept for the application of a magnetocaloric device in energy-efficient air conditioners is introduced. In order to evaluate this concept, a test stand has been developed equipped with a magnetic field source providing about a 1.5-T flux density change into which different regenerator geometries can be implemented and evaluated. A processing route for the production of profiled magnetocaloric LaFeSiMn-based composite plates by tape casting is presented. The processed plates show a maximum isothermal entropy change of about 3.8 J kg −1 K −1 at a magnetic field change of 1.5 T at 285 K. The hydraulic and thermal performance of regenerator geometries that can be realized by profiled plates is assessed by calculations. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Combining carbon nanotubes and chitosan for the vectorization of methotrexate to lung cancer cells
    (Basel : MDPI AG, 2019) Cirillo, G.; Vittorio, O.; Kunhardt, D.; Valli, E.; Voli, F.; Farfalla, A.; Curcio, M.; Spizzirri, U.G.; Hampel, S.
    A hybrid system composed of multi-walled carbon nanotubes coated with chitosan was proposed as a pH-responsive carrier for the vectorization of methotrexate to lung cancer. The effective coating of the carbon nanostructure by chitosan, quantified (20% by weight) by thermogravimetric analysis, was assessed by combined scanning and transmission electron microscopy, and X-ray photoelectron spectroscopy (N1s signal), respectively. Furthermore, Raman spectroscopy was used to characterize the interaction between polysaccharide and carbon counterparts. Methotrexate was physically loaded onto the nanohybrid and the release profiles showed a pH-responsive behavior with higher and faster release in acidic (pH 5.0) vs. neutral (pH 7.4) environments. Empty nanoparticles were found to be highly biocompatible in either healthy (MRC-5) or cancerous (H1299) cells, with the nanocarrier being effective in reducing the drug toxicity on MRC-5 while enhancing the anticancer activity on H1299.
  • Item
    Analysis of electronic properties frommagnetotransport measurements on Ba(Fe1-xNix)2As2 thin films
    (Basel : MDPI AG, 2020) Shipulin, I.; Richter, S.; Thomas, A.A.; Nielsch, K.; Hühne, R.; Martovitsky, V.
    We performed a detailed structural, magnetotransport, and superconducting analysis of thin epitaxial Ba(Fe1-xNix)2As2 films with Ni doping of x = 0.05 and 0.08, as prepared by pulsed laser deposition. X-ray diffraction studies demonstrate the high crystalline perfection of the films, which have a similar quality to single crystals. Furthermore, magnetotransport measurements of the films were performed in magnetic fields up to 9 T. The results we used to estimate the density of electronic states at the Fermi level, the coefficient of electronic heat capacity, and other electronic parameters for this compound, in their dependence on the dopant concentration within the framework of the Ginzburg-Landau-Abrikosov-Gorkov theory. The comparison of the determined parameters with measurement data on comparable Ba(Fe1-xNix)2As2 single crystals shows good agreement, which confirms the high quality of the obtained films.
  • Item
    Mo-La2O3 multilayer metallization systems for high temperature surface acoustic wave sensor devices
    (Basel : MDPI AG, 2019) Menzel, S.B.; Seifert, M.; Priyadarshi, A.; Rane, G.K.; Park, E.; Oswald, S.; Gemming, T.
    Developing advanced thin film materials is the key challenge in high-temperature applications of surface acoustic wave sensor devices. One hundred nanometer thick (Mo-La2O3) multilayer systems were fabricated at room temperature on thermally oxidized (100) Si substrates (SiO2/Si) to study the effect of lanthanum oxide on the electrical resistivity of molybdenum thin films and their high-temperature stability. The multilayer systems were deposited by the magnetron sputter deposition of extremely thin (≤1 nm) La interlayers in between adjacent Mo layers. After deposition of each La layer the process was interrupted for 25 to 60 min to oxidize the La using the residual oxygen in the high vacuum of the deposition chamber. The samples were annealed at 800 °C in high vacuum for up to 120 h. In case of a 1 nm thick La interlayer in-between the Mo a continuous layer of La2O3 is formed. For thinner La layers an interlayer between adjacent Mo layers is observed consisting of a (La2O3-Mo) mixed structure of molybdenum and nm-sized lanthanum oxide particles. Measurements show that the (Mo-La2O3) multilayer systems on SiO2/Si substrates are stable at least up to 800 °C for 120 h in high vacuum conditions.
  • Item
    Electroless-deposited platinum antennas for wireless surface acousticwave sensors
    (Basel : MDPI AG, 2019) Brachmann, E.; Seifert, M.; Neumann, N.; Alshwawreh, N.; Uhlemann, M.; Menzel, S.B.; Acker, J.; Herold, S.; Hoffmann, V.; Gemming, T.
    In an effort to develop a cost-efficient technology for wireless high-temperature surface acoustic wave sensors, this study presents an evaluation of a combined method that integrates physical vapor deposition with electroless deposition for the fabrication of platinum-based planar antennas. The proposed manufacturing process becomes attractive for narrow, thick, and sparse metallizations for antennas in the MHz to GHz frequency range. In detail, narrow platinum-based lines of a width down to 40 μm were electroless-deposited on γ -Al2O3 substrates using different seed layers. At first, the electrolyte chemistry was optimized to obtain the highest deposition rate. Films with various thickness were prepared and the electrical resistivity, microstructure, and chemical composition in the as-prepared state and after annealing at temperatures up to 1100 °C were evaluated. Using these material parameters, the antenna was simulated with an electromagnetic full-wave simulation tool and then fabricated. The electrical parameters, including the S-parameters of the antenna, were measured. The agreement between the simulated and the realized antenna is then discussed.
  • Item
    High temperature behavior of rual thin films on piezoelectric CTGS and LGS substrates
    (Basel : MDPI AG, 2020) Seifert, M.
    This paper reports on a significant further improvement of the high temperature stability of RuAl thin films (110 nm) on the piezoelectric Ca3TaGa3Si2O14 (CTGS) and La3Ga5SiO14 (LGS) substrates. RuAl thin films with AlN or SiO2 cover layers and barriers to the substrate (each 20 nm), as well as a combination of both were prepared on thermally oxidized Si substrates, which serve as a reference for fundamental studies, and the piezoelectric CTGS, as well as LGS substrates. In somefilms, additional Al layers were added. To study their high temperature stability, the samples were annealed in air and in high vacuum up to 900 °C, and subsequently their cross-sections, phase formation, film chemistry, and electrical resistivity were analyzed. It was shown that on thermally oxidized Si substrates, all films were stable after annealing in air up to 800 °C and in high vacuum up to 900 °C. The high temperature stability of RuAl thin films on CTGS substrates was improved up to 900 °C in high vacuum by the application of a combined AlN/SiO2 barrier layer and up to 800 °C in air using a SiO2 barrier. On LGS, the films were only stable up to 600 °C in air; however, a single SiO2 barrier layer was sufficient to prevent oxidation during annealing at 900 °C in high vacuum.