Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Comprehensive Assessment of the Dynamics of Banana Chilling Injury by Advanced Optical Techniques

2021, Herppich, Werner B., Zsom, Tamás

Green‐ripe banana fruit are sensitive to chilling injury (CI) and, thus, prone to postharvest quality losses. Early detection of CI facilitates quality maintenance and extends shelf life. CI affects all metabolic levels, with membranes and, consequently, photosynthesis being primary targets. Optical techniques such as chlorophyll a fluorescence analysis (CFA) and spectroscopy are promising tools to evaluate CI effects in photosynthetically active produce. Results obtained on bananas are, however, largely equivocal. This results from the lack of a rigorous evaluation of chilling impacts on the various aspects of photosynthesis. Continuous and modulated CFA and imaging (CFI), and VIS remission spectroscopy (VRS) were concomitantly applied to noninvasively and comprehensively monitor photosynthetically relevant effects of low temperatures (5 °C, 10 °C, 11.5 °C and 13 °C). Detailed analyses of chilling‐related variations in photosynthetic activity and photoprotection, and in contents of relevant pigments in green‐ripe bananas, helped to better understand the physiological changes occurring during CI, highlighting that distinct CFA and VRS parameters comprehensively reflect various effects of chilling on fruit photosynthesis. They revealed why not all CFA parameters can be applied meaningfully for early detection of chilling effects. This study provides relevant requisites for improving CI monitoring and prediction.

Loading...
Thumbnail Image
Item

On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB

2021, Doumbia, E. Moustapha, Janke, David, Yi, Qianying, Zhang, Guoqiang, Amon, Thomas, Kriegel, Martin, Hempel, Sabrina

The tracer gas method is one of the common ways to evaluate the air exchange rate in a naturally ventilated barn. One crucial condition for the accuracy of the method is that both considered gases (pollutant and tracer) are perfectly mixed at the points where the measurements are done. In the present study, by means of computational fluids dynamics (CFD), the mixing ratio NH3/CO2 is evaluated inside a barn in order to assess under which flow conditions the common height recommendation guidelines for sampling points (sampling line and sampling net) of the tracer gas method are most valuable. Our CFD model considered a barn with a rectangular layout and four animal-occupied zones modeled as a porous medium representing pressure drop and heat entry from lying and standing cows. We studied three inflow angles and six combinations of air inlet wind speed and temperatures gradients covering the three types of convection, i.e., natural, mixed, and forced. Our results showed that few cases corresponded to a nearly perfect gas mixing ratio at the currently common recommendation of at least a 3 m measurement height, while the best height in fact lied between 1.5 m and 2.5 m for most cases.

Loading...
Thumbnail Image
Item

Publisher Correction: Rapid and low-cost insect detection for analysing species trapped on yellow sticky traps

2021, Böckmann, Elias, Pfaff, Alexander, Schirrmann, Michael, Pflanz, Michael

Correction to: Scientific Reports https://doi.org/10.1038/s41598-021-89930-w, published online 17 May 2021

Loading...
Thumbnail Image
Item

Review of Wind Tunnel Modelling of Flow and Pollutant Dispersion within and from Naturally Ventilated Livestock Buildings

2021, Nosek, Štěpán, Jaňour, Zbyněk, Janke, David, Yi, Qianying, Aarnink, André, Calvet, Salvador, Hassouna, Mélynda, Jakubcová, Michala, Demeyer, Peter, Zhang, Guoqiang

Ammonia emissions from naturally ventilated livestock buildings (NVLBs) pose a serious environmental problem. However, the mechanisms that control these emissions are still not fully understood. One promising method for understanding these mechanisms is physical modelling in wind tunnels. This paper reviews studies that have used this method to investigate flow or pollutant dispersion within or from NVLBs. The review indicates the importance of wind tunnels for understanding the flow and pollutant dispersion processes within and from NVLBs. However, most studies have investigated the flow, while only few studies have focused on pollutant dispersion. Furthermore, only few studies have simulated all the essential parameters of the approaching boundary layer. Therefore, this paper discusses these shortcomings and provides tips and recommendations for further research in this respect.

Loading...
Thumbnail Image
Item

Trade-off for survival: Microbiome response to chemical exposure combines activation of intrinsic resistances and adapted metabolic activity

2022, Adi Wicaksono, Wisnu, Braun, Maria, Bernhardt, Jörg, Riedel, Katharina, Cernava, Tomislav, Berg, Gabriele

The environmental microbiota is increasingly exposed to chemical pollution. While the emergence of multi-resistant pathogens is recognized as a global challenge, our understanding of antimicrobial resistance (AMR) development from native microbiomes and the risks associated with chemical exposure is limited. By implementing a lichen as a bioindicator organism and model for a native microbiome, we systematically examined responses towards antimicrobials (colistin, tetracycline, glyphosate, and alkylpyrazine). Despite an unexpectedly high resilience, we identified potential evolutionary consequences of chemical exposure in terms of composition and functioning of native bacterial communities. Major shifts in bacterial composition were observed due to replacement of naturally abundant taxa; e.g. Chthoniobacterales by Pseudomonadales. A general response, which comprised activation of intrinsic resistance and parallel reduction of metabolic activity at RNA and protein levels was deciphered by a multi-omics approach. Targeted analyses of key taxa based on metagenome-assembled genomes reflected these responses but also revealed diversified strategies of their players. Chemical-specific responses were also observed, e.g., glyphosate enriched bacterial r-strategists and activated distinct ARGs. Our work demonstrates that the high resilience of the native microbiota toward antimicrobial exposure is not only explained by the presence of antibiotic resistance genes but also adapted metabolic activity as a trade-off for survival. Moreover, our results highlight the importance of native microbiomes as important but so far neglected AMR reservoirs. We expect that this phenomenon is representative for a wide range of environmental microbiota exposed to chemicals that potentially contribute to the emergence of antibiotic-resistant bacteria from natural environments.

Loading...
Thumbnail Image
Item

Solar energy policy implementation in Ghana: A LEAP model analysis

2022, Amo-Aidoo, A., Kumi, E.N., Hensel, O., Korese, J.K., Sturm, B.

Current global climate change mitigation programs have been unable to meet the Paris Agreement's targets, and Ghana's situation is no exception. There is, therefore, an increased need for intensification of renewable energy deployment programs with an emphasis on solar energy as it constitutes about 90% of Ghana's installed renewable energy generation capacity. The study demonstrates how appropriate renewable energy policy can drive solar energy development in Ghana. Electricity demand scenarios were developed using historical data from 2000 to 2018, after which projections were made up to 2030 based on the average year-on-year electricity growth rate. Of the three electricity demand categories, residential demand experienced a steeper growth rate in comparison with the special load tariff, non-residential, and street lighting sectors. On the supply side, low, moderate, and visionary supply scenarios had increased solar penetration of 5 %, 10 %, and 15 % of the installed generation capacity respectively. While appreciable gains were made in the low and moderate supply scenarios, the visionary supply scenario could meet the renewable energy target with solar energy by 2030; leading to universal access to electricity while offsetting over 13 million metric tonnes of carbon dioxide in the process.

Loading...
Thumbnail Image
Item

Can Livestock Farming Benefit from Industry 4.0 Technology? Evidence from Recent Study

2022, Kraft, Martin, Bernhardt, Heinz, Brunsch, Reiner, Büscher, Wolfgang, Colangelo, Eduardo, Graf, Henri, Marquering, Johannes, Tapken, Heiko, Toppel, Kathrin, Westerkamp, Clemens, Ziron, Martin

The term ”Agriculture 4.0” emerged from the term “Industry 4.0” like amany other “4.0” terms. However, are Industry 4.0 technologies and concepts really applicable to agriculture? Are the benefits that Industry 4.0 brings to industrial use cases transferable to livestock farming? This paper tries to answer this question for the three dominant sectors of livestock farming in Central Europe and Germany: Poultry, pig fattening, and dairy farming. These sectors are analyzed along with the eight most relevant Industry 4.0 benefits. The results show that only part of the Industry 4.0 benefits are relevant for livestock farming in a similar manner as in industrial production. Due to basic differences between industrial and livestock farming use cases, some of the benefits must be adapted. The presence of individual living animals and the strong environmental impact of livestock farming affect the role of digital individualization and demand orientation. The position of livestock farming within the value chain minimizes the need for flexibilization. The introduction and adoption of Industry 4.0 concepts and technologies may contribute significantly to transforming agriculture into something that may be called Agriculture 4.0. Technologies are indispensable for this development step, but vocational education and open-mindedness of farmers towards Industry 4.0 is essential as well.

Loading...
Thumbnail Image
Item

Rapid and low-cost insect detection for analysing species trapped on yellow sticky traps

2021, Böckmann, Elias, Pfaff, Alexander, Schirrmann, Michael, Pflanz, Michael

While insect monitoring is a prerequisite for precise decision-making regarding integrated pest management (IPM), it is time- and cost-intensive. Low-cost, time-saving and easy-to-operate tools for automated monitoring will therefore play a key role in increased acceptance and application of IPM in practice. In this study, we tested the differentiation of two whitefly species and their natural enemies trapped on yellow sticky traps (YSTs) via image processing approaches under practical conditions. Using the bag of visual words (BoVW) algorithm, accurate differentiation between both natural enemies and the Trialeurodes vaporariorum and Bemisia tabaci species was possible, whereas the procedure for B. tabaci could not be used to differentiate this species from T. vaporariorum. The decay of species was considered using fresh and aged catches of all the species on the YSTs, and different pooling scenarios were applied to enhance model performance. The best performance was reached when fresh and aged individuals were used together and the whitefly species were pooled into one category for model training. With an independent dataset consisting of photos from the YSTs that were placed in greenhouses and consequently with a naturally occurring species mixture as the background, a differentiation rate of more than 85% was reached for natural enemies and whiteflies.