Search Results

Now showing 1 - 10 of 19
  • Item
    Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability
    (Amsterdam : Elsevier, 2017) Hempel, Sabrina; König, Marcel; Menz, Christoph; Janke, David; Amon, Barbara; Banhazi, Thomas M.; Estellés, Fernando; Amon, Thomas
    The microclimatic conditions in dairy buildings affect animal welfare and gaseous emissions. Measurements are highly variable due to the inhomogeneous distribution of heat and humidity sources (related to farm management) and the turbulent inflow (associated with meteorologic boundary conditions). The selection of the measurement strategy (number and position of the sensors) and the analysis methodology adds to the uncertainty of the applied measurement technique. To assess the suitability of different sensor positions, in situations where monitoring in the direct vicinity of the animals is not possible, we collected long-term data in two naturally ventilated dairy barns in Germany between March 2015 and April 2016 (horizontal and vertical profiles with 10 to 5 min temporal resolution). Uncertainties related to the measurement setup were assessed by comparing the device outputs under lab conditions after the on-farm experiments. We found out that the uncertainty in measurements of relative humidity is of particular importance when assessing heat stress risk and resulting economic losses in terms of temperature-humidity index. Measurements at a height of approximately 3 m–3.5 m turned out to be a good approximation for the microclimatic conditions in the animal occupied zone (including the air volume close to the emission active zone). However, further investigation along this cross-section is required to reduce uncertainties related to the inhomogeneous distribution of humidity. In addition, a regular sound cleaning (and if possible recalibration after few months) of the measurement devices is crucial to reduce the instrumentation uncertainty in long-term monitoring of relative humidity in dairy barns. © 2017 The Authors
  • Item
    Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data
    (Amsterdam : Elsevier, 2022) Hänsel, Martin C.; Franks, Max; Kalkuhl, Matthias; Edenhofer, Ottmar
    We develop a model of optimal taxation and redistribution under an ambitious climate target. We take into account vertical income differences, but also explicitly capture horizontal equity concerns by considering heterogeneous energy efficiencies. By deriving first- and second-best rules for policy instruments including carbon and labor taxes, transfers and energy subsidies, we investigate analytically how vertical and horizontal inequality is considered in the welfare maximizing tax structure. We calibrate the model to German household data and a 30 percent emission reduction goal and show that redistribution of carbon tax revenues via household-specific transfers is the first-best policy. Under plausible assumptions on inequality aversion, transfers to energy-intensive households should be about five times higher than transfers to energy-efficient households. Equal per-capita transfers do not require to observe households’ efficiency type, but increase equity-weighted mitigation costs by around 5 percent compared to the first-best. Mitigation costs increase by less, if the government can implement a uniform clean energy subsidy or household-specific tax-subsidy schemes on energy consumption and labor income that target heterogeneous energy efficiencies. Horizontal equity concerns may therefore constitute a new second-best rationale for clean energy policies or differentiated energy taxes.
  • Item
    Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century
    (Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, Ottmar
    This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.
  • Item
    Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm
    (Amsterdam : Elsevier, 2016) van Vuuren, Detlef P.; Stehfest, Elke; Gernaat, David E.H.J.; Doelman, Jonathan C.; van den Berg, Maarten; Harmsen, Mathijs; de Boer, Harmen Sytze; Bouwman, Lex F.; Daioglou, Vassilis; Edelenbosch, Oreane Y.; Girod, Bastien; Kram, Tom; Lassaletta, Luis; Lucas, Paul L.; van Meijl, Hans; Müller, Christoph; van Ruijven, Bas J.; van der Sluis, Sietske; Tabeau, Andrzej
    This paper describes the possible developments in global energy use and production, land use, emissions and climate changes following the SSP1 storyline, a development consistent with the green growth (or sustainable development) paradigm (a more inclusive development respecting environmental boundaries). The results are based on the implementation using the IMAGE 3.0 integrated assessment model and are compared with a) other IMAGE implementations of the SSPs (SSP2 and SSP3) and b) the SSP1 implementation of other integrated assessment models. The results show that a combination of resource efficiency, preferences for sustainable production methods and investment in human development could lead to a strong transition towards a more renewable energy supply, less land use and lower anthropogenic greenhouse gas emissions in 2100 than in 2010, even in the absence of explicit climate policies. At the same time, climate policy would still be needed to reduce emissions further, in order to reduce the projected increase of global mean temperature from 3 Â°C (SSP1 reference scenario) to 2 or 1.5 Â°C (in line with current policy targets). The SSP1 storyline could be a basis for further discussions on how climate policy can be combined with achieving other societal goals.
  • Item
    The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview
    (Amsterdam : Elsevier, 2016) Riahi, Keywan; van Vuuren, Detlef P.; Kriegler, Elmar; Edmonds, Jae; O’Neill, Brian C.; Fujimori, Shinichiro; Bauer, Nico; Calvin, Katherine; Dellink, Rob; Fricko, Oliver; Lutz, Wolfgang; Popp, Alexander; Crespo Cuaresma, Jesus; KC, Samir; Leimbach, Marian; Jiang, Leiwen; Kram, Tom; Rao, Shilpa; Emmerling, Johannes; Ebi, Kristie; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Aleluia Da Silva, Lara; Smith, Steve; Stehfest, Elke; Bosetti, Valentina; Eom, Jiyong; Gernaat, David; Masui, Toshihiko; Rogelj, Joeri; Strefler, Jessica; Drouet, Laurent; Krey, Volker; Luderer, Gunnar; Harmsen, Mathijs; Takahashi, Kiyoshi; Baumstark, Lavinia; Doelman, Jonathan C.; Kainuma, Mikiko; Klimont, Zbigniew; Marangoni, Giacomo; Lotze-Campen, Hermann; Obersteiner, Michael; Tabeau, Andrzej; Tavoni, Massimo
    This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 Â°C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).
  • Item
    Future air pollution in the Shared Socio-economic Pathways
    (Amsterdam : Elsevier, 2016) Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; Van Dingenen, Rita; Dentener, Frank; Bouwman, Lex; Riahi, Keywan; Amann, Markus; Bodirsky, Benjamin Leon; van Vuuren, Detlef P.; Aleluia Reis, Lara; Calvin, Katherine; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Gernaat, David; Havlik, Petr; Harmsen, Mathijs; Hasegawa, Tomoko; Heyes, Chris; Hilaire, Jérôme; Luderer, Gunnar; Masui, Toshihiko; Stehfest, Elke; Strefler, Jessica; van der Sluis, Sietske; Tavoni, Massimo
    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.
  • Item
    Future growth patterns of world regions – A GDP scenario approach
    (Amsterdam : Elsevier, 2015) Leimbach, Marian; Kriegler, Elmar; Roming, Niklas; Schwanitz, Jana
    Global GDP projections for the 21st century are needed for the exploration of long-term global environmental problems, in particular climate change. Greenhouse gas emissions as well as climate change mitigation and adaption capacities strongly depend on growth of per capita income. However, long-term economic projections are highly uncertain. This paper provides five new long-term economic scenarios as part of the newly developed shared socio-economic pathways (SSPs) which represent a set of widely diverging narratives. A method of GDP scenario building is presented that is based on assumptions about technological progress, and human and physical capital formation as major drivers of long-term GDP per capita growth. The impact of these drivers differs significantly between different shared socio-economic pathways and is traced back to the underlying narratives and the associated population and education scenarios. In a highly fragmented world, technological and knowledge spillovers are low. Hence, the growth impact of technological progress and human capital is comparatively low, and per capita income diverges between world regions. These factors play a much larger role in globalization scenarios, leading to higher economic growth and stronger convergence between world regions. At the global average, per capita GDP is projected to grow annually in a range between 1.0% (SSP3) and 2.8% (SSP5) from 2010 to 2100. While this covers a large portion of variety in future global economic growth projections, plausible lower and higher growth projections may still be conceivable. The GDP projections are put into the context of historic patterns of economic growth (stylized facts), and their sensitivity to key assumptions is explored.
  • Item
    Challenges for developing national climate services – Poland and Norway
    (Amsterdam : Elsevier, 2017) Kundzewicz, Zbigniew W.; Førland, Eirik J.; Piniewski, Mikołaj
    This contribution discusses the challenges for developing national climate services in two countries with high fossil fuel production – Poland (coal) and Norway (oil and gas). Both countries, Poland and Norway, have highly developed weather services, but largely differ on climate services. Since empirical and dynamical downscaling of climate models started in Norway over 20 years ago and meteorological and hydrological institutions in Oslo and Bergen have been collaborating on tailoring and disseminating downscaled climate projections to the Norwegian society, climate services are now well developed in Norway. The Norwegian Centre for Climate Services (NCCS) was established in 2011. In contrast, climate services in Poland, in the international understanding, do not exist. Actually, Poland is not an exception, as compared to other Central and Eastern European countries, many of which neither have their national climate services, nor are really interested in European climate services disseminated via common EU initiatives. It is worth posing a question – can Poland learn from Norway as regards climate services? This contribution is based on results of the CHASE-PL (Climate change impact assessment for selected sectors in Poland) project, carried out in the framework of the Polish – Norwegian Research Programme. The information generated within the Polish-Norwegian CHASE-PL project that is being broadly disseminated in Poland can be considered as a substitute for information delivered in other countries by climate services.
  • Item
    Simulation of flood hazard and risk in the Danube basin with the Future Danube Model
    (Amsterdam : Elsevier, 2018) Hattermann, Fred F.; Wortmann, Michel; Liersch, Stefan; Toumi, Ralf; Sparks, Nathan; Genillard, Christopher; Schröter, Kai; Steinhausen, Max; Gyalai-Korpos, Miklós; Máté, Kinga; Hayes, Ben; del Rocío Rivas López, María; Rácz, Tibor; Nielsen, Marie R.; Kaspersen, Per S.; Drews, Martin
    Major river and flash flood events have accumulated in Central and Eastern Europe over the last decade reminding the public as well as the insurance sector that climate related risks are likely to become even more damaging and prevalent as climate patterns change. However, information about current and future hydro-climatic extremes is often not available. The Future Danube Model (FDM) is an end-user driven multi-hazard and risk model suite for the Danube region that has been developed to provide climate services related to perils such as heavy precipitation, heat waves, floods, and droughts under recent and scenario conditions. As a result, it provides spatially consistent information on extreme events and natural resources throughout the entire Danube catchment. It can be used to quantify climate risks, to support the implementation of the EU framework directives, for climate informed urban and land use planning, water resources management, and for climate proofing of large scale infrastructural planning including cost benefit analysis. The model suite consists of five individual and exchangeable modules: a weather and climate module, a hydrological module, a risk module, an adaptation module, and a web-based visualization module. They are linked in such a way that output from one module can either be used standalone or fed into subsequent modules. The utility of the tool has been tested by experts and stakeholders. The results show that more and more intense hydrological extremes are likely to occur under climate scenario conditions, e.g. higher order floods may occur more frequently.
  • Item
    The strategic dimension of financing global public goods
    (Amsterdam : Elsevier, 2020) Kornek, Ulrike; Edenhofer, Ottmar
    One challenge in addressing transboundary problems such as climate change is the incentive to free-ride. Transfers from multilateral compensation funds are often used to counteract such incentives, albeit with varying success. We examine how such funds can change the incentive to free-ride in a global public-goods game. In our game, self-interested countries choose their own preferred course, deciding their voluntary public good provision, whether to join a fund that offers compensation for providing the public good and the volume of compensatory payments. We show that (i) total public-good provision is higher when those contributing are given more compensation; and (ii) non-participation in the fund can be punished if the remaining members decrease their public-good provision sufficiently. We then examine three specific fund designs. In the first, the compensation paid to each country is equal to the percentage of above-average total costs for public-goods provision. This design is best able to deter free-riding and can establish the social optimum as the equilibrium. In the second, the compensation paid to each country is a function of the marginal cost of their public-good provision. Here there are significant incentives to free-ride. In the third case, the monetary resources provided by the fund are fixed, a design frequently encountered in international funds. This design is the one least able to deter free-riding. © 2020 The Author(s)