Search Results

Now showing 1 - 10 of 124
Loading...
Thumbnail Image
Item

Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays

2023, Tang, Min, Wang, Jiawei, Valligatla, Sreeramulu, Saggau, Christian N., Dong, Haiyun, Saei Ghareh Naz, Ehsan, Klembt, Sebastian, Lee, Ching Hua, Thomale, Ronny, van den Brink, Jeroen, Fulga, Ion Cosma, Schmidt, Oliver G., Ma, Libo

The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.

Loading...
Thumbnail Image
Item

Auger- and X-ray Photoelectron Spectroscopy at Metallic Li Material: Chemical Shifts Related to Sample Preparation, Gas Atmosphere, and Ion and Electron Beam Effects

2022, Oswald, Steffen

Li-based batteries are a key element in reaching a sustainable energy economy in the near future. The understanding of the very complex electrochemical processes is necessary for the optimization of their performance. X-ray photoelectron spectroscopy (XPS) is an accepted method used to improve understanding around the chemical processes at the electrode surfaces. Nevertheless, its application is limited because the surfaces under investigation are mostly rough and inhomogeneous. Local elemental analysis, such as Auger electron spectroscopy (AES), could assist XPS to gain more insight into the chemical processes at the surfaces. In this paper, some challenges in using electron spectroscopy are discussed, such as binding energy (BE) referencing for the quantitative study of chemical shifts, gas atmospheric influences, or beam damage (including both AE and XP spectroscopy). Carefully prepared and surface-modified metallic lithium material is used as model surface, considering that Li is the key element for most battery applications.

Loading...
Thumbnail Image
Item

Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials

2021, He, Shiyang, Lehmann, Sebastian, Bahrami, Amin, Nielsch, Kornelius

Thermoelectric (TE) materials are prominent candidates for energy converting applications due to their excellent performance and reliability. Extensive efforts for improving their efficiency in single-/multi-phase composites comprising nano/micro-scale second phases are being made. The artificial decoration of second phases into the thermoelectric matrix in multi-phase composites, which is distinguished from the second-phase precipitation occurring during the thermally equilibrated synthesis of TE materials, can effectively enhance their performance. Theoretically, the interfacial manipulation of phase boundaries can be extended to a wide range of materials. High interface densities decrease thermal conductivity when nano/micro-scale grain boundaries are obtained and certain electronic structure modifications may increase the power factor of TE materials. Based on the distribution of second phases on the interface boundaries, the strategies can be divided into discontinuous and continuous interfacial modifications. The discontinuous interfacial modifications section in this review discusses five parts chosen according to their dispersion forms, including metals, oxides, semiconductors, carbonic compounds, and MXenes. Alternatively, gas- and solution-phase process techniques are adopted for realizing continuous surface changes, like the core–shell structure. This review offers a detailed analysis of the current state-of-the-art in the field, while identifying possibilities and obstacles for improving the performance of TE materials.

Loading...
Thumbnail Image
Item

Machine learning for additive manufacturing: Predicting materials characteristics and their uncertainty

2023, Chernyavsky, Dmitry, Kononenko, Denys Y., Han, Jun Hee, Kim, Hwi Jun, van den Brink, Jeroen, Kosiba, Konrad

Additive manufacturing (AM) is known for versatile fabrication of complex parts, while also allowing the synthesis of materials with desired microstructures and resulting properties. These benefits come at a cost: process control to manufacture parts within given specifications is very challenging due to the relevance of a large number of processing parameters. Efficient predictive machine learning (ML) models trained on small datasets, can minimize this cost. They also allow to assess the quality of the dataset inclusive of uncertainty. This is important in order for additively manufactured parts to meet property specifications not only on average, but also within a given variance or uncertainty. Here, we demonstrate this strategy by developing a heteroscedastic Gaussian process (HGP) model, from a dataset based on laser powder bed fusion of a glass-forming alloy at varying processing parameters. Using amorphicity as the microstructural descriptor, we train the model on our Zr52.5Cu17.9Ni14.6Al10Ti5 (at.%) alloy dataset. The HGP model not only accurately predicts the mean value of amorphicity, but also provides the respective uncertainty. The quantification of the aleatoric and epistemic uncertainty contributions allows to assess intrinsic inaccuracies of the dataset, as well as identify underlying physical phenomena. This HGP model approach enables to systematically improve ML-driven AM processes.

Loading...
Thumbnail Image
Item

Charge‐Compensated N‐Doped π ‐Conjugated Polymers: Toward both Thermodynamic Stability of N‐Doped States in Water and High Electron Conductivity

2022, Borrmann, Fabian, Tsuda, Takuya, Guskova, Olga, Kiriy, Nataliya, Hoffmann, Cedric, Neusser, David, Ludwigs, Sabine, Lappan, Uwe, Simon, Frank, Geisler, Martin, Debnath, Bipasha, Krupskaya, Yulia, Al‐Hussein, Mahmoud, Kiriy, Anton

The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective “in-water” applications is developed. A combined experimental–theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10−2 S cm−1 under ambient conditions and 10−1 S cm−1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced “collapse” of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.

Loading...
Thumbnail Image
Item

Semitransparent Perovskite Solar Cells with an Evaporated Ultra-Thin Perovskite Absorber

2023, Zhang, Zongbao, Ji, Ran, Jia, Xiangkun, Wang, Shu‐Jen, Deconinck, Marielle, Siliavka, Elena, Vaynzof, Yana

Metal halide perovskites are of great interest for application in semitransparent solar cells due to their tunable bandgap and high performance. However, fabricating high-efficiency perovskite semitransparent devices with high average visible transmittance (AVT) is challenging because of their high absorption coefficient. Here, a co-evaporation process is adopted to fabricate ultra-thin CsPbI3 perovskite films. The smooth surface and orientated crystal growth of the evaporated perovskite films make it possible to achieve 10 nm thin films with compact and continuous morphology without pinholes. When integrated into a p-i-n device structure of glass/ITO/PTAA/perovskite/PCBM/BCP/Al/Ag with an optimized transparent electrode, these ultra-thin layers result in an impressive open-circuit voltage (VOC) of 1.08 V and a fill factor (FF) of 80%. Consequently, a power conversion efficiency (PCE) of 3.6% with an AVT above 50% is demonstrated, which is the first report for a perovskite device of a 10 nm active layer thickness with high VOC, FF and AVT. These findings demonstrate that deposition by thermal evaporation makes it possible to form compact ultra-thin perovskite films, which are of great interest for future smart windows, light-emitting diodes, and tandem device applications.

Loading...
Thumbnail Image
Item

Tailoring Plasmonics of Au@Ag Nanoparticles by Silica Encapsulation

2021, Schultz, Johannes, Kirner, Felizitas, Potapov, Pavel, Büchner, Bernd, Lubk, Axel, Sturm, Elena V.

Hybrid metallic nanoparticles (NPs) encapsulated in oxide shells are currently intensely studied for plasmonic applications in sensing, medicine, catalysis, and photovoltaics. Here, a method for the synthesis of Au@Ag@SiO2 cubes with a uniform silica shell of variable and adjustable thickness in the nanometer range is introduced and their excellent, highly reproducible, and tunable optical response is demonstrated. Varying the silica shell thickness, the excitation energies of the single NP plasmon modes can be tuned in a broad spectral range between 2.55 and 3.25 eV. Most importantly, a strong coherent coupling of the surface plasmons is revealed at the silver–silica interface with Mie resonances at the silica–vacuum interface leading to a significant field enhancement at the encapsulated NP surface in the range of 100% at shell thicknesses t ≃ 20 nm. Consequently, the synthesis method and the field enhancement open pathways to a widespread use of silver NPs in plasmonic applications including photonic crystals and may be transferred to other non-precious metals. © 2021 The Authors. Advanced Optical Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Photoluminescence Mapping over Laser Pulse Fluence and Repetition Rate as a Fingerprint of Charge and Defect Dynamics in Perovskites

2023, Rao, Shraddha M., Kiligaridis, Alexander, Yangui, Aymen, An, Qingzhi, Vaynzof, Yana, Scheblykin, Ivan G.

Defects in metal halide perovskites (MHP) are photosensitive, making the observer effect unavoidable when laser spectroscopy methods are applied. Photoluminescence (PL) bleaching and enhancement under light soaking and recovery in dark are examples of the transient phenomena that are consequent to the creation and healing of defects. Depending on the initial sample composition, environment, and other factors, the defect nature and evolution can strongly vary, making spectroscopic data analysis prone to misinterpretations. Herein, the use of an automatically acquired dependence of PL quantum yield (PLQY) on the laser pulse repetition rate and pulse fluence as a unique fingerprint of both charge carrier dynamics and defect evolution is demonstrated. A simple visual comparison of such fingerprints allows for assessment of similarities and differences between MHP samples. The study illustrates this by examining methylammonium lead triiodide (MAPbI3) films with altered stoichiometry that just after preparation showed very pronounced defect dynamics at time scale from milliseconds to seconds, clearly distorting the PLQY fingerprint. Upon weeks of storage, the sample fingerprints evolve toward the standard stoichiometric MAPbI3 in terms of both charge carrier dynamics and defect stability. Automatic PLQY mapping can be used as a universal method for assessment of perovskite sample quality.

Loading...
Thumbnail Image
Item

Transparent Power-Generating Windows Based on Solar-Thermal-Electric Conversion

2021, Zhang, Qihao, Huang, Aibin, Ai, Xin, Liao, Jincheng, Song, Qingfeng, Reith, Heiko, Cao, Xun, Fang, Yueping, Schierning, Gabi, Nielsch, Kornelius, Bai, Shengqiang, Chen, Lidong

Integrating transparent solar-harvesting systems into windows can provide renewable on-site energy supply without altering building aesthetics or imposing further design constraints. Transparent photovoltaics have shown great potential, but the increased transparency comes at the expense of reduced power-conversion efficiency. Here, a new technology that overcomes this limitation by combining solar-thermal-electric conversion with a material's wavelength-selective absorption is presented. A wavelength-selective film consisting of Cs0.33WO3 and resin facilitates high visible-light transmittance (up to 88%) and outstanding ultraviolet and infrared absorbance, thereby converting absorbed light into heat without sacrificing transparency. A prototype that couples the film with thermoelectric power generation produces an extraordinary output voltage of ≈4 V within an area of 0.01 m2 exposed to sunshine. Further optimization design and experimental verification demonstrate high conversion efficiency comparable to state-of-the-art transparent photovoltaics, enriching the library of on-site energy-saving and transparent power generation.

Loading...
Thumbnail Image
Item

Exciton dispersion in para-quaterphenyl: Significant molecular interactions beyond Coulomb coupling

2021, Graf, Lukas, Krupskaya, Yulia, Büchner, Bernd, Knupfer, Martin

We have experimentally determined the momentum dependence of the electronic excitation spectra of para-quaterphenyl single crystals. The parallel arrangement of para-quaterphenyl molecules results in a strong Coulomb coupling of the molecular excitons. Such crystals have been considered to be a very good realization of the Frenkel exciton model, including the formation of H-type aggregates. Our data reveal an unexpected exciton dispersion of the upper Davydov component, which cannot be rationalized in terms of inter-molecular Coulomb coupling of the excitons. A significant reduction of the nearest neighbor coupling due to additional charge-transfer processes is able to provide an explanation of the data. Furthermore, the spectral onset of the excitation spectrum, which represents a heavy exciton resulting from exciton-phonon coupling, also shows a clear dispersion, which had been unknown so far. Finally, an optically forbidden excitation about 1 eV above the excitation onset is observed. © 2021 Author(s).