Search Results

Now showing 1 - 4 of 4
  • Item
    Multistatic Specular Meteor Radar Network in Peru: System Description and Initial Results
    (Malden, Mass. : American Geophysical Union, 2021) Chau, J.L.; Urco, J.M.; Vierinen, J.; Harding, B.J.; Clahsen, M.; Pfeffer, N.; Kuyeng, K.M.; Milla, M.A.; Erickson, P.J.
    The mesosphere and lower thermosphere (MLT) region is dominated globally by dynamics at various scales: planetary waves, tides, gravity waves, and stratified turbulence. The latter two can coexist and be significant at horizontal scales less than 500 km, scales that are difficult to measure. This study presents a recently deployed multistatic specular meteor radar system, SIMONe Peru, which can be used to observe these scales. The radars are positioned at and around the Jicamarca Radio Observatory, which is located at the magnetic equator. Besides presenting preliminary results of typically reported large-scale features, like the dominant diurnal tide at low latitudes, we show results on selected days of spatially and temporally resolved winds obtained with two methods based on: (a) estimation of mean wind and their gradients (gradient method), and (b) an inverse theory with Tikhonov regularization (regularized wind field inversion method). The gradient method allows improved MLT vertical velocities and, for the first time, low-latitude wind field parameters such as horizontal divergence and relative vorticity. The regularized wind field inversion method allows the estimation of spatial structure within the observed area and has the potential to outperform the gradient method, in particular when more detections are available or when fine adaptive tuning of the regularization factor is done. SIMONe Peru adds important information at low latitudes to currently scarce MLT continuous observing capabilities. Results contribute to studies of the MLT dynamics at different scales inherently connected to lower atmospheric forcing and E-region dynamo related ionospheric variability.
  • Item
    A method to derive Fourier-wavelet spectra for the characterization of global-scale waves in the mesosphere and lower thermosphere and its MATLAB and Python software (fourierwavelet v1.1)
    (Katlenburg-Lindau : Copernicus, 2023) Yamazaki, Yosuke
    This paper describes a simple method for characterizing global-scale waves in the mesosphere and lower thermosphere (MLT), such as tides and traveling planetary waves, using uniformly gridded two-dimensional longitude-Time data. The technique involves two steps. In the first step, the Fourier transform is performed in space (longitude), and then the time series of the space Fourier coefficients are derived. In the second step, the wavelet transform is performed on these time series, and wavelet coefficients are derived. A Fourier-wavelet spectrum can be obtained from these wavelet coefficients, which gives the amplitude and phase of the wave as a function of time and wave period. It can be used to identify wave activity that is localized in time, similar to a wavelet spectrum, but the Fourier-wavelet spectrum can be obtained separately for eastward-and westward-propagating components and for different zonal wavenumbers. The Fourier-wavelet analysis can be easily implemented using existing Fourier and wavelet software. MATLAB and Python scripts are created and made available at https://igit.iap-kborn.de/yamazaki/fourierwavelet (last access: 18 August 2023) that compute Fourier-wavelet spectra using the wavelet software provided by . Some application examples are presented using MLT data from atmospheric models.
  • Item
    Impacts of acoustic and gravity waves on the ionosphere
    (Lausanne : Frontiers Media, 2022) Zawdie, Kate; Belehaki, Anna; Burleigh, Meghan; Chou, Min-Yang; Dhadly, Manbharat S.; Greer, Katelynn; Halford, Alexa J.; Hickey, Dustin; Inchin, Pavel; Kaeppler, Stephen R.; Klenzing, Jeff; Narayanan, Viswanathan Lakshmi; Sassi, Fabrizio; Sivakandan, Mani; Smith, Jonathon M.; Zabotin, Nikolay; Zettergren, Matthew D.; Zhang, Shun-Rong
    The impact of regional-scale neutral atmospheric waves has been demonstrated to have profound effects on the ionosphere, but the circumstances under which they generate ionospheric disturbances and seed plasma instabilities are not well understood. Neutral atmospheric waves vary from infrasonic waves of <20 Hz to gravity waves with periods on the order of 10 min, for simplicity, hereafter they are combined under the common term Acoustic and Gravity Waves (AGWs). There are other longer period waves like planetary waves from the lower and middle atmosphere, whose effects are important globally, but they are not considered here. The most ubiquitous and frequently observed impact of AGWs on the ionosphere are Traveling Ionospheric Disturbances (TIDs), but AGWs also affect the global ionosphere/thermosphere circulation and can trigger ionospheric instabilities (e.g., Perkins, Equatorial Spread F). The purpose of this white paper is to outline additional studies and observations that are required in the coming decade to improve our understanding of the impact of AGWs on the ionosphere.
  • Item
    Derivation of gravity wave intrinsic parameters and vertical wavelength using a single scanning OH(3-1) airglow spectrometer
    (Katlenburg-Lindau : Copernicus, 2018-5-18) Wüst, Sabine; Offenwanger, Thomas; Schmidt, Carsten; Bittner, Michael; Jacobi, Christoph; Stober, Gunter; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell III, James M.
    For the first time, we present an approach to derive zonal, meridional, and vertical wavelengths as well as periods of gravity waves based on only one OH* spectrometer, addressing one vibrational-rotational transition. Knowledge of these parameters is a precondition for the calculation of further information, such as the wave group velocity vector. OH(3-1) spectrometer measurements allow the analysis of gravity wave ground-based periods but spatial information cannot necessarily be deduced. We use a scanning spectrometer and harmonic analysis to derive horizontal wavelengths at the mesopause altitude above Oberpfaffenhofen (48.09∘ N, 11.28∘ E), Germany for 22 nights in 2015. Based on the approximation of the dispersion relation for gravity waves of low and medium frequencies and additional horizontal wind information, we calculate vertical wavelengths. The mesopause wind measurements nearest to Oberpfaffenhofen are conducted at Collm (51.30∘ N, 13.02∘ E), Germany, ca. 380 km northeast of Oberpfaffenhofen, by a meteor radar. In order to compare our results, vertical temperature profiles of TIMED-SABER (thermosphere ionosphere mesosphere energetics dynamics, sounding of the atmosphere using broadband emission radiometry) overpasses are analysed with respect to the dominating vertical wavelength.