Search Results

Now showing 1 - 7 of 7
Loading...
Thumbnail Image
Item

How the extreme 2019-2020 Australian wildfires affected global circulation and adjustments

2023, Senf, Fabian, Heinold, Bernd, Kubin, Anne, Müller, Jason, Schrödner, Roland, Tegen, Ina

Wildfires are a significant source of absorbing aerosols in the atmosphere. Extreme fires in particular, such as those during the 2019-2020 Australian wildfire season (Black Summer fires), can have considerable large-scale effects. In this context, the climate impact of extreme wildfires unfolds not only because of the emitted carbon dioxide but also due to smoke aerosol released up to an altitude of 17ĝ€¯km. The overall aerosol effects depend on a variety of factors, such as the amount emitted, the injection height, and the composition of the burned material, and is therefore subject to considerable uncertainty. In the present study, we address the global impact caused by the exceptionally strong and high-reaching smoke emissions from the Australian wildfires using simulations with a global aerosol-climate model. We show that the absorption of solar radiation by the black carbon contained in the emitted smoke led to a shortwave radiative forcing of more than +5ĝ€¯Wm-2 in the southern mid-latitudes of the lower stratosphere. Subsequent adjustment processes in the stratosphere slowed down the diabatically driven meridional circulation, thus redistributing the heating perturbation on a global scale. As a result of these stratospheric adjustments, a positive temperature perturbation developed in both hemispheres, leading to additional longwave radiation emitted back to space. According to the model results, this adjustment occurred in the stratosphere within the first 2 months after the event. At the top of the atmosphere (TOA), the net effective radiative forcing (ERF) averaged over the Southern Hemisphere was initially dominated by the instantaneous positive radiative forcing of about +0.5ĝ€¯Wm-2, for which the positive sign resulted mainly from the presence of clouds above the Southern Ocean. The longwave adjustments led to a compensation of the initially net positive TOA ERF, which is seen in the Southern Hemisphere, the tropics, and the northern mid-latitudes. The simulated changes in the lower stratosphere also affected the upper troposphere through a thermodynamic downward coupling. Subsequently, increased temperatures were also obtained in the upper troposphere, causing a global decrease in relative humidity, cirrus amount, and the ice water path of about 0.2ĝ€¯%. As a result, surface precipitation also decreased by a similar amount, which was accompanied by a weakening of the tropospheric circulation due to the given energetic constraints. In general, it appears that the radiative effects of smoke from single extreme wildfire events can lead to global impacts that affect the interplay of tropospheric and stratospheric budgets in complex ways. This emphasizes that future changes in extreme wildfires need to be included in projections of aerosol radiative forcing.

Loading...
Thumbnail Image
Item

Overview: The Baltic Earth Assessment Reports (BEAR)

2023, Meier, H. E. Markus, Reckermann, Marcus, Langner, Joakim, Smith, Ben, Didenkulova, Ira

Baltic Earth is an independent research network of scientists from all Baltic Sea countries that promotes regional Earth system research. Within the framework of this network, the Baltic Earth Assessment Reports (BEARs) were produced in the period 2019-2022. These are a collection of 10 review articles summarising current knowledge on the environmental and climatic state of the Earth system in the Baltic Sea region and its changes in the past (palaeoclimate), present (historical period with instrumental observations) and prospective future (until 2100) caused by natural variability, climate change and other human activities. The division of topics among articles follows the grand challenges and selected themes of the Baltic Earth Science Plan, such as the regional water, biogeochemical and carbon cycles; extremes and natural hazards; sea-level dynamics and coastal erosion; marine ecosystems; coupled Earth system models; scenario simulations for the regional atmosphere and the Baltic Sea; and climate change and impacts of human use. Each review article contains an introduction, the current state of knowledge, knowledge gaps, conclusions and key messages; the latter are the bases on which recommendations for future research are made. Based on the BEARs, Baltic Earth has published an information leaflet on climate change in the Baltic Sea as part of its outreach work, which has been published in two languages so far, and organised conferences and workshops for stakeholders, in collaboration with the Baltic Marine Environment Protection Commission (Helsinki Commission, HELCOM).

Loading...
Thumbnail Image
Item

Next-generation ice-nucleating particle sampling on board aircraft: characterization of the High-volume flow aERosol particle filter sAmpler (HERA)

2023, Grawe, Sarah, Jentzsch, Conrad, Schaefer, Jonas, Wex, Heike, Mertes, Stephan, Stratmann, Frank

Atmospheric ice-nucleating particle (INP) concentration data from the free troposphere are sparse but urgently needed to understand vertical transport processes of INPs and their influence on cloud formation and properties. Here, we introduce the new High-volume flow aERosol particle filter sAmpler (HERA) which was specially developed for installation on research aircraft and subsequent offline INP analysis. HERA is a modular system consisting of a sampling unit and a powerful pump unit, and it has several features which were integrated specifically for INP sampling. Firstly, the pump unit enables sampling at flow rates exceeding 100 L min-1, which is well above typical flow rates of aircraft INP sampling systems described in the literature (∼ 10 L min-1). Consequently, required sampling times to capture rare, high-temperature INPs (≥ -15 C) are reduced in comparison to other systems, and potential source regions of INPs can be confined more precisely. Secondly, the sampling unit is designed as a seven-way valve, enabling switching between six filter holders and a bypass with one filter being sampled at a time. In contrast to other aircraft INP sampling systems, the valve position is remote-controlled via software so that manual filter changes during flight are eliminated and the potential for sample contamination is decreased. This design is compatible with a high degree of automation, i.e., triggering filter changes depending on parameters like flight altitude, geographical location, temperature, or time. In addition to presenting the design and principle of operation of HERA, this paper describes laboratory characterization experiments with size-selected test substances, i.e., SNOMAX® and Arizona Test Dust. The particles were sampled on filters with HERA, varying either particle diameter (300 to 800 nm) or flow rate (10 to 100 L min-1) between experiments. The subsequent offline INP analysis showed good agreement with literature data and comparable sampling efficiencies for all investigated particle sizes and flow rates. Furthermore, the collection efficiency of atmospheric INPs in HERA was compared to a straightforward filter sampler and good agreement was found. Finally, results from the first campaign of HERA on the High Altitude and LOng range research aircraft (HALO) demonstrate the functionality of the new system in the context of aircraft application.

Loading...
Thumbnail Image
Item

Air pollution trapping in the Dresden Basin from gray-zone scale urban modeling

2023, Weger, Michael, Heinold, Bernd

The microscale variability of urban air pollution is essentially driven by the interaction between meteorology and urban topography, which remains challenging to represent spatially accurately and computationally efficiently in urban dispersion models. Natural topography can additionally exert a considerable amplifying effect on urban background pollution, depending on atmospheric stability. This requires an equally important representation in models, as even subtle terrain-height variations can enforce characteristic local flow regimes. In this model study, the effects of urban and natural topography on the local winds and air pollution dispersion in the Dresden Basin in the Eastern German Elbe valley are investigated. A new, efficient urban microscale model is used within a multiscale air quality modeling framework. The simulations that consider real meteorological and emission conditions focus on two periods in late winter and early summer, respectively, as well as on black carbon (BC), a key air pollutant mainly emitted from motorized traffic. As a complement to the commonly used mass concentrations, the particle age content (age concentration) is simulated. This concept, which was originally developed to study hydrological reservoir flows in a Eulerian framework, is adapted here for the first time for atmospheric boundary-layer modeling. The approach is used to identify stagnant or recirculating orographic air flows and resulting air pollution trapping. An empirical orthogonal function (EOF) analysis is applied to the simulation results to attribute the air pollution modes to specific weather patterns and quantify their significance. Air quality monitoring data for the region are used for model evaluation. The model results show a strong sensitivity to atmospheric conditions, but generally confirm increased BC levels in Dresden due to the valley location. The horizontal variability of mass concentrations is dominated by the patterns of traffic emissions, which overlay potential orography-driven pollutant accumulations. Therefore, an assessment of the orographic impact on air pollution is usually inconclusive. However, using the age-concentration metric, which filters out direct emission effects, previously undetected spatial patterns are discovered that are largely modulated by the surface orography. The comparison with a dispersion simulation assuming spatially homogeneous emissions also proves the robustness of the orographic flow information contained in the age-concentration distribution and shows it to be a suitable metric for assessing orographic air pollution trapping. The simulation analysis indicates several air quality hotspots on the southwestern slopes of the Dresden Basin and in the southern side valley, the Döhlen Basin, depending on the prevailing wind direction.

Loading...
Thumbnail Image
Item

Cloud top heights and aerosol layer properties from EarthCARE lidar observations: The A-CTH and A-ALD products

2023, Wandinger, Ulla, Haarig, Moritz, Baars, Holger, Donovan, David, van Zadelhoff, Gerd-Jan

The high-spectral-resolution Atmospheric Lidar (ATLID) on the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) provides vertically resolved information on aerosols and clouds with unprecedented accuracy. Together with the Cloud Profiling Radar (CPR), the Multi-Spectral Imager (MSI), and the Broad-Band Radiometer (BBR) on the same platform, it allows for a new synergistic view on atmospheric processes related to the interaction of aerosols, clouds, precipitation, and radiation at the global scale. This paper describes the algorithms for the determination of cloud top height and aerosol layer information from ATLID Level 1b (L1b) and Level 2a (L2a) input data. The ATLID L2a Cloud Top Height (A-CTH) and Aerosol Layer Descriptor (A-ALD) products are developed to ensure the provision of atmospheric layer products in continuation of the heritage from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). Moreover, the products serve as input for synergistic algorithms that make use of data from ATLID and MSI. Therefore, the products are provided on the EarthCARE joint standard grid (JSG). A wavelet covariance transform (WCT) method with flexible thresholds is applied to determine layer boundaries from the ATLID Mie co-polar signal. Strong features detected with a horizontal resolution of 1 JSG pixel (approximately 1ĝ€¯km) or 11 JSG pixels are classified as thick or thin clouds, respectively. The top height of the uppermost cloud layer together with information on cloud layering are stored in the A-CTH product for further use in the generation of the ATLID-MSI Cloud Top Height (AM-CTH) synergy product. Aerosol layers are detected as weaker features at a resolution of 11 JSG pixels. Layer-mean optical properties are calculated from the ATLID L2a Extinction, Backscatter and Depolarization (A-EBD) product and stored in the A-ALD product, which also contains the aerosol optical thickness (AOT) of each layer, the stratospheric AOT, and the AOT of the entire atmospheric column. The latter parameter is used to produce the synergistic ATLID-MSI Aerosol Column Descriptor (AM-ACD) later in the processing chain. Several quality criteria are applied in the generation of A-CTH and A-ALD, and respective information is stored in the products. The functionality and performance of the algorithms are demonstrated by applying them to common EarthCARE test scenes. Conclusions are drawn for the application to real-world data and the validation of the products after the launch of EarthCARE.

Loading...
Thumbnail Image
Item

Wildfire smoke triggers cirrus formation: Lidar observations over the eastern Mediterranean

2023, Mamouri, Rodanthi-Elisavet, Ansmann, Albert, Ohneiser, Kevin, Knopf, Daniel A., Nisantzi, Argyro, Bühl, Johannes, Engelmann, Ronny, Skupin, Annett, Seifert, Patric, Baars, Holger, Ene, Dragos, Wandinger, Ulla, Hadjimitsis, Diofantos

The number of intense wildfires may increase further in upcoming years as a consequence of climate change. It is therefore necessary to improve our knowledge about the role of smoke in the climate system, with emphasis on the impact of smoke particles on the evolution of clouds, precipitation, and cloud radiative properties. Presently, one key aspect of research is whether or not wildfire smoke particles can initiate cirrus formation. In this study, we present lidar observations over Limassol, Cyprus, from 27 October to 3 November 2020, when extended wildfire smoke fields crossed the Mediterranean Basin from Portugal to Cyprus. We found strong evidence that aged smoke (organic aerosol particles) originating from wildfires in North America triggered significant ice nucleation at temperatures from -47 to -53° C and caused the formation of extended cirrus layers. The observations suggest that the ice crystals were nucleated just below the tropopause in the presence of smoke particles serving as ice-nucleating particles (INPs). The main part of the 2-3km thick smoke layer was, however, in the lower stratosphere just above the tropopause. With actual radiosonde observations of temperature and relative humidity and lidar-derived smoke particle surface area concentrations used as starting values, gravity wave simulations show that the lofting of air by 100-200m is sufficient to initiate significant ice nucleation on the smoke particles, leading to ice crystal number concentrations of 1-100L-1.

Loading...
Thumbnail Image
Item

Cloud mask algorithm from the EarthCARE Multi-Spectral Imager: the M-CM products

2023, Hünerbein, Anja, Bley, Sebastian, Horn, Stefan, Deneke, Hartwig, Walther, Andi

The EarthCARE (Earth Clouds, Aerosols and Radiation Explorer) satellite mission will provide new insights into aerosol-cloud-radiation interactions by means of synergistic observations of the Earth's atmosphere from a collection of active and passive remote sensing instruments, flying on a single satellite platform. The Multi-Spectral Imager (MSI) will provide visible and infrared images in the cross-track direction with a 150km swath and a pixel sampling at 500m. The suite of MSI cloud algorithms will deliver cloud macro- and microphysical properties complementary to the vertical profiles measured from the Atmospheric Lidar (ATLID) and the Cloud Profiling Radar (CPR) instruments. This paper provides an overview of the MSI cloud mask algorithm (M-CM) being developed to derive the cloud flag, cloud phase and cloud type products, which are essential inputs to downstream EarthCARE algorithms providing cloud optical and physical properties (M-COP) and aerosol optical properties (M-AOT). The MSI cloud mask algorithm has been applied to simulated test data from the EarthCARE end-to-end simulator and satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) as well as from the Spinning Enhanced Visible InfraRed Imager (SEVIRI). Verification of the MSI cloud mask algorithm to the simulated test data and the official cloud products from SEVIRI and MODIS demonstrates a good performance of the algorithm. Some discrepancies are found, however, for the detection of thin cirrus clouds over bright surfaces like desert or snow. This will be improved by tuning of the thresholds once real observations are available.