Search Results

Now showing 1 - 10 of 1645
Loading...
Thumbnail Image
Item

2-hydroxyethylammonium iodide

2014, Kohrt, C., Spannenberg, A., Werner, T.

In the crystal structure of the title salt, C2H 8NO+·I-, N-H⋯O, N-H⋯I and O-H⋯I hydrogen bonds lead to the formation of layers staggered along the c axis.

Loading...
Thumbnail Image
Item

Dicyclohexylbis(naphthalen-1-ylmethyl)phosphonium chloride chloroform disolvate

2012, Gowrisankar, S., Neumann, H., Spannenberg, A., Beller, M.

In the title solvated phosphonium salt, C34H40P+·Cl -·2CHCl3, the two cyclohexyl and two 1-naphthylmethyl groups at the P atom are in a distorted tetrahedral arrangement [105.26 (6)-113.35 (6)°]. Both cyclohexyl rings adopt a chair conformation. The dihedral angle between the naphthyl ring systems is 74.08 (3)°.

Loading...
Thumbnail Image
Item

(Cyanido-κC)(2,2-diphenylacetamido-κ2 N,O)bis(η5-pentamethylcyclopentadienyl)zirconium(IV)

2014, Becker, L., Spannenberg, A., Arndt, P., Rosenthal, U.

In the title compound, [Zr(C10H15)2(C14H12NO)(CN)], the ZrIV atom is coordinated by two pentamethylcyclopentadienyl ligands, the amidate ligand via the N and O atoms, and an additional C N ligand. The four-membered metallacycle is nearly planar (r.m.s. deviation = 0.008Ã…). In the crystal, the molecules are connected into centrosymmetric dimers via pairs of N - HN hydrogen bonds.

Loading...
Thumbnail Image
Item

Self-propelled micromotors for cleaning polluted water

2013, Soler, L., Magdanz, V., Fomin, V.M., Sanchez, S., Schmidt, O.G.

We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction-diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water.

Loading...
Thumbnail Image
Item

Crystal structure of diethyl (E)-2-[(benzofuran-2-yl)methylidene]succinate

2015, Schirmer, Marie-Luis, Spannenberg, Anke, Werner, Thomas

The title compound, C17H18O5, was synthesized by a base-free catalytic Wittig reaction. The mol­ecule consists of a diethyl itaconate unit, which is connected via the C=C double bond to a benzo­furan moiety. The benzo­furan ring system (r.m.s. deviation = 0.007 Å) forms dihedral angles of 79.58 (4) and 12.12 (10)° with the mean planes through the cis and trans eth­oxy­carbonyl groups, respectively. An intra­molecular C-H...O hydrogen bond involving the O atom of the benzo­furan moiety is observed. In the crystal, mol­ecules are linked into ribbons running parallel to the b axis by C-H...O hydrogen bonds.

Loading...
Thumbnail Image
Item

Dicarbonyl-{3,3′-di-tert-butyl-5,5′-di-methoxy-2, 2′-bis[(4,4,5,5-tetraphenyl-1,3,2-dioxaphospho-lan-2-yl)-oxy-κP] biphen-yl}hydridorhodium(I) diethyl ether monosolvate

2012, Selent, D., Spannenberg, A., Börner, A.

In the title compound, [Rh(C 74H 68O 8P2)H(CO) 2]·C 4H 10O, the C 2HP 2 coordination set at the Rh I ion is arranged in a distorted trigonal-planar geometry with one P atom of the diphosphite mol-ecule and the H atom adopting the axial coordination sites.

Loading...
Thumbnail Image
Item

Conformations of a Long Polymer in a Melt of Shorter Chains: Generalizations of the Flory Theorem

2015, Lang, Michael, Rubinstein, Michael, Sommer, Jens-Uwe

Large-scale simulations of the swelling of a long N-mer in a melt of chemically identical P-mers are used to investigate a discrepancy between theory and experiments. Classical theory predicts an increase of probe chain size R ∼ P–0.18 with decreasing degree of polymerization P of melt chains in the range of 1 < P < N1/2. However, both experiment and simulation data are more consistent with an apparently slower swelling R ∼ P–0.1 over a wider range of melt degrees of polymerization. This anomaly is explained by taking into account the recently discovered long-range bond correlations in polymer melts and corrections to excluded volume. We generalize the Flory theorem and demonstrate that it is in excellent agreement with experiments and simulations.

Loading...
Thumbnail Image
Item

{N,N-Bis[bis(2,2,2-trifluoroethoxy)phosphanyl]methylamine- κ2 P,P′}bis(η5-cyclopentadienyl) titanium(II)

2013, Haehnel, M., Hansen, S., Spannenberg, A., Beweries, T.

The title compound, [Ti(C5H5)2(C 9H11F12NO4P2)], is a four-membered titanacycle obtained from the reaction of Cp2Ti(η 2-Me3SiC2SiMe3) and CH 3N[P(OCH2CF3)2]2 {N,N-bis[bis(trifluoroethoxy)phosphanyl]methylamine, tfepma}. The Ti II atom is coordinated by two cyclopentadienyl (Cp) ligands and the chelating tfepma ligand in a strongly distorted tetrahedral geometry. The molecule is located on a mirror plane.

Loading...
Thumbnail Image
Item

2,4-Bis(diphenyl-phosphan-yl)-1,1,2,3,3,4-hexa-phenyl-1,3-diphospha-2, 4-dibora-cyclo-butane tetra-hydro-furan sesqui-solvate

2012, Peulecke, N., Müller, B.H., Spannenberg, A., Rosenthal, U.

In the title compound, C60H50B2P 4·1.5C4H8O, the diphospha-diborane mol-ecule lies on an inversion centre, whereas the disordered tetra-hydro-furan solvent mol-ecule is in a general position with a partial occupancy of 0.75. The diphosphadiborane mol-ecule consists of an ideal planar four-membered B 2P2 ring with an additional phenyl and a-PPH2 group attached to each B atom.

Loading...
Thumbnail Image
Item

Fast, Label-Free Tracking of Single Viruses and Weakly Scattering Nanoparticles in a Nanofluidic Optical Fiber

2015, Faez, Sanli, Lahini, Yoav, Weidlich, Stefan, Garmann, Rees F., Wondraczek, Katrin, Zeisberger, Matthias, Schmidt, Markus A., Orrit, Michel, Manoharan, Vinothan N.

High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.