Search Results

Now showing 1 - 10 of 13
  • Item
    Near-surface fault detection using high-resolution shear wave reflection seismics at the CO2CRC Otway Project site, Australia
    (Hoboken, NJ : Wiley, 2016) Beilecke, Thies; Krawczyk, Charlotte M.; Ziesch, Jennifer; Tanner, David C.
    High-resolution, near-surface, shear wave reflection seismic measurements were carried out in November 2013 at the CO2CRC Otway Project site, Victoria, Australia, with the aim to determine whether and, if so, where deeper faults reach the near subsurface. From a previous P wave 3-D reflection seismic data set that was concentrated on a reservoir at 2 km depth, we can only interpret faults up to 400 m below sea level. For the future monitoring in the overburden of the CO2 reservoir it is important to know whether and how the faults continue in the subsurface. We prove that two regional fault zones do in fact reach the surface instead of dying out at depth. Individual first-break signatures in the shot gathers along the profiles support this interpretation. However, this finding does not imply perforce communication between the reservoir and the surface in the framework of CO2 injection. The shear wave seismic sections are complementary to existing P wave volumes. They image with high resolution (better than 3 m vertically) different tectonic structures. Similar structures also outcrop on the southern coast of the Otway Basin. Both the seismic and the outcrops evidence the complex youngest structural history of the area.
  • Item
    Northern Mediterranean climate since the Middle Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia)
    (Katlenburg-Lindau : European Geosciences Union, 2016) Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Sloane, Hilary J.; Milodowski, Antoni; Vogel, Hendrik; Baumgarten, Henrike; Zanchetta, Giovanni; Wagner, Bernd
    Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (Ī“18O) and carbon (Ī“13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (Ī“18Oc and Ī“13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (Ī“18Os and Ī“13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct Ī“18O of lake water (Ī“18Olw) over the last 637 ka. Interglacials have higher Ī“18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid. Ā© Author(s) 2016.
  • Item
    Sedimentological processes and environmental variability at Lake Ohrid (Macedonia, Albania) between 637 ka and the present
    (Katlenburg-Lindau : European Geosciences Union, 2016) Francke, Alexander; Wagner, Bernd; Just, Janna; Leicher, Niklas; Gromig, Raphael; Baumgarten, Henrike; Vogel, Hendrik; Lacey, Jack H.; Sadori, Laura; Wonik, Thomas; Leng, Melanie J.; Zanchetta, Giovanni; Sulpizio, Roberto; Giaccio, Biagio
    Lake Ohrid (Macedonia, Albania) is thought to be more than 1.2 million years old and host more than 300 endemic species. As a target of the International Continental scientific Drilling Program (ICDP), a successful deep drilling campaign was carried out within the scope of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in 2013. Here, we present lithological, sedimentological, and (bio-)geochemical data from the upper 247.8 m composite depth of the overall 569 m long DEEP site sediment succession from the central part of the lake. According to an age model, which is based on 11 tephra layers (first-order tie points) and on tuning of bio-geochemical proxy data to orbital parameters (second-order tie points), the analyzed sediment sequence covers the last 637 kyr. The DEEP site sediment succession consists of hemipelagic sediments, which are interspersed by several tephra layers and infrequent, thin (< 5 cm) mass wasting deposits. The hemipelagic sediments can be classified into three different lithotypes. Lithotype 1 and 2 deposits comprise calcareous and slightly calcareous silty clay and are predominantly attributed to interglacial periods with high primary productivity in the lake during summer and reduced mixing during winter. The data suggest that high ion and nutrient concentrations in the lake water promoted calcite precipitation and diatom growth in the epilimnion during MIS15, 13, and 5. Following a strong primary productivity, highest interglacial temperatures can be reported for marine isotope stages (MIS) 11 and 5, whereas MIS15, 13, 9, and 7 were comparably cooler. Lithotype 3 deposits consist of clastic, silty clayey material and predominantly represent glacial periods with low primary productivity during summer and longer and intensified mixing during winter. The data imply that the most severe glacial conditions at Lake Ohrid persisted during MIS16, 12, 10, and 6, whereas somewhat warmer temperatures can be inferred for MIS14, 8, 4, and 2. Interglacial-like conditions occurred during parts of MIS14 and 8. Ā© Author(s) 2016.
  • Item
    The Towuti Drilling Project: paleoenvironments, biological evolution, andgeomicrobiology of a tropical Pacific lake
    (Sapporo : IODP, 2016) Russell, James M.; Bijaksana, Satria; Vogel, Hendrik; Melles, Martin; Kallmeyer, Jens; Ariztegui, Daniel; Crowe, Sean; Fajar, Silvia; Hafidz, Abdul; Haffner, Doug; Hasberg, Ascelina; Ivory, Sarah; Kelly, Christopher; King, John; Kirana, Kartika; Morlock, Marina; Noren, Anders; O'Grady, Ryan; Ordonez, Luis; Stevenson, Janelle; von Rintelen, Thomas; Vuillemin, Aurele; Watkinson, Ian; Wattrus, Nigel; Wicaksono, Satrio; Wonik, Thomas; Bauer, Kohen; Deino, Alan; Friese, AndrƩ; Henny, Cynthia; Marwoto, Ristiyanti; Ngkoimani, La Ode; Nomosatryo, Sulung; Safiuddin, La Ode; Simister, Rachel; Tamuntuan, Gerald
    The Towuti Drilling Project (TDP) is an international research program, whose goal is to understand long-term environmental and climatic change in the tropical western Pacific, the impacts of geological and environmental changes on the biological evolution of aquatic taxa, and the geomicrobiology and biogeochemistry of metal-rich, ultramafic-hosted lake sediments through the scientific drilling of Lake Towuti, southern Sulawesi, Indonesia. Lake Towuti is a large tectonic lake at the downstream end of the Malili lake system, a chain of five highly biodiverse lakes that are among the oldest lakes in Southeast Asia. In 2015 we carried out a scientific drilling program on Lake Towuti using the International Continental Scientific Drilling Program (ICDP) Deep Lakes Drilling System (DLDS). We recovered a total of ā€‰āˆ¼ā€‰1018ā€Æm of core from 11 drilling sites with water depths ranging from 156 to 200ā€Æm. Recovery averaged 91.7ā€Æ%, and the maximum drilling depth was 175ā€Æm below the lake floor, penetrating the entire sedimentary infill of the basin. Initial data from core and borehole logging indicate that these cores record the evolution of a highly dynamic tectonic and limnological system, with clear indications of orbital-scale climate variability during the mid- to late Pleistocene.
  • Item
    Initiation and development of normal faults within the German alpine foreland basin: The inconspicuous role of basement structures
    (Hoboken, NJ : Wiley, 2016) Hartmann, Hartwig von; Tanner, David C.; Schumacher, Sandra
    In a large seismic cube within the German Alpine Molasse Basin, we recognize large normal faults with lateral alternating dips that displace the Molasse sediments. They are disconnected but strike parallel to fault lineaments of the underlying carbonate platform. This raises the question how such faults could independently develop. Structural analysis suggests that the faults grew both upward and downward from the middle of the Molasse package, i.e., they newly initiated within the Molasse sediments and were not caused by reactivation of the faults in the carbonate platform and/or crystalline basement. Numerical modeling of the basin proves that temporarily and spatially confined extensional stresses existed within the Molasse sediments but not in the carbonate platform and basement during lithospheric bending. The workflow shown here gives a new and as yet undocumented insight in the tectonic and structural processes within a foreland basin that was affected by buckling and bending in front of the orogen.
  • Item
    Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography
    (Gƶttingen : Copernicus Publ., 2016) Schmitt, Mayka; Halisch, Matthias; MĆ¼ller, Cornelia; Fernandes, Celso Peres
    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rockā€“fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (Āµ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94ā€Æ% and from 58.80 to 45.18ā€Æ% when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.
  • Item
    X-ray computed tomography investigation of structures in Opalinus Clay fromlarge-scale to small-scale after mechanical testing
    (Gƶttingen : Copernicus Publ., 2016) Kaufhold, Annette; Halisch, Matthias; Zacher, Gerhard; Kaufhold, Stephan
    In the past years X-ray computed tomography (CT) has became more and more common for geoscientific applications and is used from the Āµm-scale (e.g. for investigations of microfossils or pore-scale structures) up to the dm-scale (full drill cores or soil columns). In this paper we present results from CT imaging and mineralogical investigations of an Opalinus Clay core on different scales and different regions of interest, emphasizing especially the 3-D evaluation and distribution of cracks and their impact on mechanical testing of such material. Enhanced knowledge of the testing behaviour of the Opalinus Clay is of great interest, especially since this material is considered for a long-term radioactive waste disposal and storage facility in Switzerland. Hence, results are compared regarding the mineral (i.e. phase) contrast resolution, the spatial resolution, and the overall scanning speed. With this extensive interdisciplinary scale-down approach it has been possible to characterize the general fracture propagation in comparison to mineralogical and textural features of the Opalinus Clay. Additionally, and as far as we know, a so-called mylonitic zone, located at an intersect of two main fractures, has been observed for the first time for an experimentally deformed Opalinus sample. The multi-scale results are in good accordance to data from naturally deformed Opalinus Clay samples, which enables us to perform systematical research under controlled laboratory conditions. Accompanying 3-D imaging greatly enhances the capability of data interpretation and assessment of such a material.
  • Item
    High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures ā€“ a case study in Bad Frankenhausen, Germany
    (Gƶttingen : Copernicus Publ., 2016) Wadas, Sonja H.; Polom, Ulrich; Krawczyk, Charlotte M.
    Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332ā€Æm, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93Ā° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the KyffhƤuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72ā€Æm long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100ā€Æm and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1ā€Æm in the uppermost 10ā€“15ā€Æm.
  • Item
    Pore-scale tomography and imaging: applications, techniques and recommended practice
    (Gƶttingen : Copernicus Publ., 2016) Halisch, Matthias; Steeb, Holger; Henkel, Steven; Krawczyk, Charlotte M.
    [No abstract available]
  • Item
    Development of a numerical workflow based on Ī¼-CT imaging for the determination of capillary pressureā€“saturation-specific interfacial area relationship in 2-phase flow pore-scale porous-media systems: a case study on Heletz sandstone
    (Gƶttingen : Copernicus Publ., 2016) Peche, Aaron; Halisch, Matthias; Bogdan Tatomir, Alexandru; Sauter, Martin
    In this case study, we present the implementation of a finite element method (FEM)-based numerical pore-scale model that is able to track and quantify the propagating fluidā€“fluid interfacial area on highly complex micro-computed tomography (Ī¼-CT)-obtained geometries. Special focus is drawn to the relationship between reservoir-specific capillary pressure (pc), wetting phase saturation (Sw) and interfacial area (awn). The basis of this approach is high-resolution Ī¼-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated 2-phase flow model is based on the Navierā€“Stokes equations, including the surface tension force, in order to consider capillary effects for the computation of flow and the phase-field method for the emulation of a sharp fluidā€“fluid interface. In combination with specialized software packages, a complex high-resolution modelling domain can be obtained. A numerical workflow based on representative elementary volume (REV)-scale pore-size distributions is introduced. This workflow aims at the successive modification of model and model set-up for simulating, such as a type of 2-phase problem on asymmetric Ī¼-CT-based model domains. The geometrical complexity is gradually increased, starting from idealized pore geometries until complex Ī¼-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore-size distribution. Finally, the model can be applied to a complex Ī¼-CT-based model domain and the pcā€“Swā€“awn relationship can be computed.