Search Results

Now showing 1 - 10 of 484
  • Item
    Influence of microwave plasma treatment on the surface properties of carbon fibers and their adhesion in a polypropylene matrix
    (London [u.a.] : Institute of Physics, 2016) Scheffler, C.; Wölfel, E.; Förster, T.; Poitzsch, C.; Kotte, L.; Mäder, G.; Madsen, Bo; Biel, A.; Kusano, Y.; Lilholt, H.; Mikkelsen, L.P.; Mishnaevsky Jr., L.; Sørensen, B.F.
    A commercially available carbon fiber (CF) with an epoxy-based sizing (EP-sized CF) and an unsized CF have been plasma treated to study the effect on the fiber-matrix adhesion towards a polypropylene matrix. The EP-sized fiber was chosen because of its predictable low adhesion in a polypropylene (PP) matrix. The fibers have been modified using a microwave low-pressure O2/CO2/N2-gas plasma source (Cyrannus®) developed at IWS in a batch process. One aim of this study was the evaluation of parameters using high energies and short time periods in the plasma chamber to see the effect on mechanical performance of CF. These results will be the fundamental work for a planned continuous plasma modification line. The CF surface was characterized by determining the surface energies, single fiber tensile strength and XPS analysis. The adhesion behavior before and after plasma treatment was studied by single fiber pull-out test (SFPO) and scanning electron microscopy (SEM). It was shown that the CO2- and O2-plasma increases the number of functional groups on the fiber surface during short time plasma treatment of 30 s. Carboxylic groups on the unsized CF surface resulting from O2-plasma treatment lead to an enhanced fiber-matrix adhesion, whereas the fiber strength was merely reduced.
  • Item
    Raman imaging to study structural and chemical features of the dentin enamel junction
    (London [u.a.] : Institute of Physics, 2015) Alebrahim, M.A.; Krafft, C.; Popp, J.; El-Khateeb, Mohammad Y.
    The structure and chemical features of the human dentin enamel junction (DEJ) were characterized using Raman spectroscopic imaging. Slices were prepared from 10 German, and 10 Turkish teeth. Raman images were collected at 785 nm excitation and the average Raman spectra were calculated for analysis. Univariate and multivariate spectral analysis were applied for investigation. Raman images were obtained based on the intensity ratios of CH at 1450 cm-1 (matrix) to phosphate at 960 cm-1 (mineral), and carbonate to phosphate (1070/960) ratios. Different algorithms (HCA, K-means cluster and VCA) also used to study the DEJ. The obtained results showed that the width of DEJ is about 5 pm related to univariate method while it varies from 6 to 12 μm based on multivariate spectral technique. Both spectral analyses showed increasing in carbonate content inside the DEJ compared to the dentin, and the amide I (collagen) peak in dentin spectra is higher than DEJ spectra peak.
  • Item
    Promoting access to and use of seismic data in a large scientific community
    (Les Ulis : EDP Sciences, 2017) Michel, Eric; Belkacem, Kevin; Samadi, Reza; de Assis Peralta, Raphael; Renié, Christian; Abed, Mahfoudh; Lin, Guangyuan; Christensen-Dalsgaard, Jørgen; Houdek, Günter; Handberg, Rasmus; Gizon, Laurent; Burston, Raymond; Nagashima, Kaori; Pallé, Pere; Poretti, Ennio; Rainer, Monica; Mistò, Angelo; Panzera, Maria Rosa; Roth, Markus; Monteiro, Mário J. P. F. G.; Cunha, Margarida S.; Ferreira, João Miguel T. S.
    The growing amount of seismic data available from space missions (SOHO, CoRoT, Kepler, SDO,…) but also from ground-based facilities (GONG, BiSON, ground-based large programmes…), stellar modelling and numerical simulations, creates new scientific perspectives such as characterizing stellar populations in our Galaxy or planetary systems by providing model-independent global properties of stars such as mass, radius, and surface gravity within several percent accuracy, as well as constraints on the age. These applications address a broad scientific community beyond the solar and stellar one and require combining indices elaborated with data from different databases (e.g. seismic archives and ground-based spectroscopic surveys). It is thus a basic requirement to develop a simple and effcient access to these various data resources and dedicated tools. In the framework of the European project SpaceInn (FP7), several data sources have been developed or upgraded. The Seismic Plus Portal has been developed, where synthetic descriptions of the most relevant existing data sources can be found, as well as tools allowing to localize existing data for given objects or period and helping the data query. This project has been developed within the Virtual Observatory (VO) framework. In this paper, we give a review of the various facilities and tools developed within this programme. The SpaceInn project (Exploitation of Space Data for Innovative Helio- and Asteroseismology) has been initiated by the European Helio- and Asteroseismology Network (HELAS).
  • Item
    Evaluation of Expert Reports to Quantify the Exploration Risk for Geothermal Projects in Germany
    (Amsterdam [u.a.] : Elsevier, 2015) Ganz, Britta; Ask, Maria; Hangx, Suzanne; Bruckman, Viktor; Kühn, Michael
    The development of deep geothermal energy sources in Germany still faces many uncertainties and high upfront investment costs. Methodical approaches to assess the exploration risk are thus of major importance for geothermal project development. Since 2002, expert reports to quantify the exploration risk for geothermal projects in Germany were carried out. These reports served as a basis for insurance contracts covering the exploration risk. Using data from wells drilled in the meantime, the reports were evaluated and the stated probabilities compared with values actually reached.
  • Item
    Magnetic field dynamos and magnetically triggered flow instabilities
    (London [u.a.] : Institute of Physics, 2017) Stefani, F.; Albrecht, T.; Arlt, R.; Christen, M.; Gailitis, A.; Gellert, M.; Giesecke, A.; Goepfert, O.; Herault, J.; Kirillov, O.N.; Mamatsashvili, G.; Priede, J.; Rüdiger, G.; Seilmayer, M.; Tilgner, A.; Vogt, T.; Gerbeth, Gunther; Stieglitz, Robert
    The project A2 of the LIMTECH Alliance aimed at a better understanding of those magnetohydrodynamic instabilities that are relevant for the generation and the action of cosmic magnetic fields. These comprise the hydromagnetic dynamo effect and various magnetically triggered flow instabilities, such as the magnetorotational instability and the Tayler instability. The project was intended to support the experimental capabilities to become available in the framework of the DREsden Sodium facility for DYNamo and thermohydraulic studies (DRESDYN). An associated starting grant was focused on the dimensioning of a liquid metal experiment on the newly found magnetic destabilization of rotating flows with positive shear. In this survey paper, the main results of these two projects are summarized.
  • Item
    Surface, interphase and tensile properties of unsized, sized and heat treated basalt fibres
    (London [u.a.] : Institute of Physics, 2016) Förster, T.; Sommer, G.S.; Mäder, E.; Scheffler, C.
    Recycling of fibre reinforced polymers is in the focus of several investigations. Chemical and thermal treatments of composites are the common ways to separate the reinforcing fibres from the polymer matrices. However, most sizings on glass and basalt fibre are not designed to resist high temperatures. Hence, a heat treatment might also lead to a sizing removal, a decrease of mechanical performance and deterioration in fibre-matrix adhesion. Different basalt fibres were investigated using surface analysis methods as well as single fibre tensile tests and single fibre pull-out tests in order to reveal the possible causes of these issues. Heat treatment in air reduced the fibre tensile strength in the same level like heat treatment in nitrogen atmosphere, but it influenced the wetting capability. Re-sizing by a coupling agent slightly increased the adhesion strength and reflected a decreased post-debonding friction.
  • Item
    Deep Geothermal Energy for Lower Saxony (North Germany) – Combined Investigations of Geothermal Reservoir Characteristics
    (Amsterdam [u.a.] : Elsevier, 2014) Hahne, Barbara; Thomas, Rüdiger; Bruckman, Viktor J.; Hangx, Suzanne; Ask, Maria
    For the economic success of a geothermal project the hydraulic properties and temperature of the geothermal reservoir are crucial. New methodologies in seismics, geoelectrics and reservoir geology are tested within the frame of the collaborative research programme “Geothermal Energy and High-Performance Drilling” (gebo). Within nine geoscientific projects, tools were developed that help in the evaluation and interpretation of acquired data. Special emphasis is placed on the investigation of rock properties, on the development of early reservoir assessment even during drilling, and on the interaction between the drilling devices and the reservoir formation. The propagation of fractures and the transport of fluid and heat within the regional stress field are investigated using different approaches (field studies, seismic monitoring, multi-parameter modelling). Geologic structural models have been created for simulation of the local stress field and hydromechanical processes. Furthermore, a comprehensive dataset of hydrogeochemical environments was collected allowing characterisation and hydrogeochemical modelling of the reservoir.
  • Item
    Modelling the Surface Heat Flow Distribution in the Area of Brandenburg (Northern Germany)
    (Amsterdam [u.a.] : Elsevier, 2013) Cacace, Mauro; Scheck-Wenderoth, Magdalena; Noack, Vera; Cherubini, Yvonne; Schellschmidt, Rüdiger; Kühn, Michael; Juhlin, Christopher; Held, Hermann; Bruckman, Viktor; Tambach, Tim; Kempka, Thomas
    A lithosphere scale geological model has been used to determine the surface heat flow component due to conductive heat transport for the area of Brandenburg. The modelling results have been constrained by a direct comparison with available heat flow measurements. The calculated heat flow captures the regional trend in the surface heat flow distribution which can be related to existing thermal conductivity variations between the different sedimentary units. An additional advective component due to topography induced regional flow and focused flow within major fault zones should be considered to explain the spatial variation observed in the surface heat flow.
  • Item
    Carrier Lifetime in Liquid-phase Crystallized Silicon on Glass
    (Amsterdam [u.a.] : Elsevier, 2016) Vetter, Michael; Gawlik, Annett; Plentz, Jonathan; Andrä, Gudrun; Ribeyron, Pierre-Jean; Cuevas, Andres; Weeber, Arthur; Ballif, Christophe; Glunz, Stefan; Poortmans, Jef; Brendel, Rolf; Aberle, Armin; Sinton, Ron; Verlinden, Pierre; Hahn, Giso
    Liquid-phase crystallized silicon on glass (LPCSG) presents a promising material to fabricate high quality silicon thin films, e.g. for solar cells and modules. Barrier layers and a doped amorphous silicon layer are deposited on the glass substrate followed by crystallization with a line focus laser beam. In this paper we introduce injection level dependent lifetime measurements generated by the quasi steady-state photoconductance decay method (QSSPC) to characterize LPCSG absorbers. This contactless method allows a determination of the LPCSG absorber quality already at an early stage of solar cell fabrication, and provides a monitoring of the absorber quality during the solar cell fabrication steps. We found minority carrier lifetimes higher than 200ns in our layers (e.g. n-type absorber with ND=2x1015cm-3) indicating a surface recombination velocity SBL<3000cm/s at the barrier layer/Si interface.
  • Item
    Dynamical studies on the generation of periodic surface structures by femtosecond laser pulses
    (Les Ulis : EDP Sciences, 2013) Rosenfeld, A.; Höhm, S.; Bonse, J.; Krüger, J.
    The dynamics of the formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800 nm center wavelength) is studied experimentally using a double pulse experiment with cross polarized pulse sequences and a trans illumination femtosecond time-resolved (0.1 ps - 1 ns) pump-probe diffraction approach. The results in both experiments confirm the importance of the ultrafast energy deposition and the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS.