Search Results

Now showing 1 - 5 of 5
  • Item
    Cell stimulation versus cell death induced by sequential treatments with pulsed electric fields and cold atmospheric pressure plasma
    (San Francisco, California, US : PLOS, 2018) Steuer, Anna; Wolff, Christina M.; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Kolb, Juergen F.
    Pulsed electric fields (PEFs) and cold atmospheric pressure plasma (CAP) are currently both investigated for medical applications. The exposure of cells to PEFs can induce the formation of pores in cell membranes and consequently facilitate the uptake of molecules. In contrast, CAP mainly acts through reactive species that are generated in the liquid environment. The objective of this study was to determine, if PEFs combined with plasma-treated cell culture medium can mutually reinforce effects on viability of mammalian cells. Experiments were conducted with rat liver epithelial WB-F344 cells and their tumorigenic counterpart WB-ras for a direct comparison of non-tumorigenic and tumorigenic cells from the same origin. Viability after treatments strongly depended on cell type and applied field strength. Notably, tumorigenic WB-ras cells responded more sensitive to the respective treatments than non-tumorigenic WB-F344 cells. More cells were killed when plasma-treated medium was applied first in combination with treatments with 100-μs PEFs. For the reversed treatment order, i.e. application of PEFs first, the combination with 100-ns PEFs resulted in a stimulating effect for non-tumorigenic but not for tumorigenic cells. The results suggest that other mechanisms, besides simple pore formation, contributed to the mutually reinforcing effects of the two methods.
  • Item
    The stability of memristive multidirectional associative memory neural networks with time-varying delays in the leakage terms via sampled-data control
    (San Francisco, California, US : PLOS, 2018) Wang, Weiping; Yu, Xin; Luo, Xiong; Wang, Long; Li, Lixiang; Kurths, Jürgen; Zhao, Wenbing; Xiao, Jiuhong
    In this paper, we propose a new model of memristive multidirectional associative memory neural networks, which concludes the time-varying delays in leakage terms via sampled-data control. We use the input delay method to turn the sampling system into a continuous time-delaying system. Then we analyze the exponential stability and asymptotic stability of the equilibrium points for this model. By constructing a suitable Lyapunov function, using the Lyapunov stability theorem and some inequality techniques, some sufficient criteria for ensuring the stability of equilibrium points are obtained. Finally, numerical examples are given to demonstrate the effectiveness of our results.
  • Item
    Discovery of chitin in skeletons of non-verongiid Red Sea demosponges
    (San Francisco, California, US : PLOS, 2018) Ehrlich, Hermann; Shaala, Lamiaa A.; Youssef, Diaa T. A.; Żółtowska- Aksamitowska, Sonia; Tsurkan, Mikhail; Galli, Roberta; Meissner, Heike; Wysokowski, Marcin; Petrenko, Iaroslav; Tabachnick, Konstantin R.; Ivanenko, Viatcheslav N.; Bechmann, Nicole; Joseph, Yvonne; Jesionowski, Teofil
    Marine demosponges (Porifera: Demospongiae) are recognized as first metazoans which have developed over millions of years of evolution effective survival strategies based on unique metabolic pathways to produce both biologically active secondary metabolites and biopolymer-based stiff skeletons with 3D architecture. Up to date, among marine demosponges, only representatives of the Verongiida order have been known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within skeletons of non-verongiid demosponges Acarnus wolffgangi and Echinoclathria gibbosa collected in the Red Sea. Calcofluor white staining, FTIR and Raman analysis, ESI-MS, SEM, and fluorescence microscopy as well as a chitinase digestion assay were applied in order to confirm, with strong evidence, the finding of α-chitin in the skeleton of both species. We suggest that, the finding of chitin within these representatives of Poecilosclerida order is a promising step in the evaluation of these sponges as novel renewable sources for both biologically active metabolites and chitin, which are of prospective application for pharmacology and biomedicine.
  • Item
    Biogas residue parameterization for soil organic matter modeling
    (San Francisco, California, US : PLOS, 2018-10-12) Prays, Nadia; Dominik, Peter; Sänger, Anja; Franko, Uwe
    A variety of biogas residues (BGRs) have been used as organic fertilizer in agriculture. The use of these residues affects the storage of soil organic matter (SOM). In most cases, SOM changes can only be determined in long-term observations. Therefore, predictive modeling can be an efficient alternative, provided that the parameters required by the model are known for the considered BGRs. This study was conducted as a first approach to estimating the organic matter (OM) turnover parameters of BGRs for process modeling. We used carbon mineralization data from six BGRs from an incubation experiment, representing a range of substrate inputs, to calculate a turnover coefficient k controlling the velocity of fresh organic matter (FOM) decay and a synthesis coefficient describing the SOM creation from FOM. An SOM turnover model was applied in inverse mode to identify both parameters. In a second step, we related the parameters k and to chemical properties of the corresponding BGRs using a linear regression model and applied them to a long-term scenario simulation. According to the results of the incubation experiment, the k values ranged between 0.28 and 0.58 d-1 depending on the chemical composition of the FOM. The estimated values ranged between 0.8 and 0.89. The best linear relationship of k was found to occur with pH (R2 = 0.863). Parameter is related to the Ct/Norg ratio (R2 = 0.696). Long-term scenario simulations emphasized the necessity of specific k and values related to the chemical properties for each BGR. However, further research is needed to validate and improve these preliminary results. © 2018 Prays et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Item
    A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle
    (San Francisco, California, US : PLOS, 2018-11-1) Galán, Elena; Llonch, Pol; Villagrá, Arantxa; Levit, Harel; Pinto, Severino; del Prado, Agustín
    Introduction Projected temperature rise in the upcoming years due to climate change has increased interest in studying the effects of heat stress in dairy cows. Environmental indices are commonly used for detecting heat stress, but have been used mainly in studies focused on the productivity-related effects of heat stress. The welfare approach involves identifying physiological and behavioural measurements so as to start heat stress mitigation protocols before the appearance of impending severe health or production issues. Therefore, there is growing interest in studying the effects of heat stress on welfare. This systematic review seeks to summarise the animal-based responses to heat stress (physiological and behavioural, excluding productivity) that have been used in scientific literature. Methods Using systematic review guidelines set by PRISMA, research articles were identified, screened and summarised based on inclusion criteria for physiology and behaviour, excluding productivity, for animal-based resilience indicators. 129 published articles were reviewed to determine which animal-based indicators for heat stress were most frequently used in dairy cows. Results The articles considered report at least 212 different animal-based indicators that can be aggregated into body temperature, feeding, physiological response, resting, drinking, grazing and pasture-related behaviour, reactions to heat management and others. The most common physiological animal-based indicators are rectal temperature, respiration rate and dry matter intake, while the most common behavioural indicators are time spent lying, standing and feeding. Conclusion Although body temperature and respiration rate are the animal-based indicators most frequently used to assess heat stress in dairy cattle, when choosing an animal-based indicator for detecting heat stress using scientific literature to establish thresholds, characteristics that influence the scale of the response and the definition of heat stress must be taken into account, e.g. breed, lactation stage, milk yield, system type, climate region, bedding type, diet and cooling management strategies. © 2018 Galan∗E.∗Elena et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.