Search Results

Now showing 1 - 10 of 16
  • Item
    Surface acoustic wave modulation of single photon emission from GaN/InGaN nanowire quantum dots
    (Bristol : IOP Publ., 2018) Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P.V.; van der Meulen, H.P.
    On-chip quantum information processing requires controllable quantum light sources that can be operated on-demand at high-speeds and with the possibility of in-situ control of the photon emission wavelength and its optical polarization properties. Here, we report on the dynamic control of the optical emission from core-shell GaN/InGaN nanowire (NW) heterostructures using radio frequency surface acoustic waves (SAWs). The SAWs are excited on the surface of a piezoelectric lithium niobate crystal equipped with a SAW delay line onto which the NWs were mechanically transferred. Luminescent quantum dot (QD)-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell were identified using stroboscopic micro-photoluminescence (micro-PL) spectroscopy. They exhibit narrow and almost fully linearly polarized emission lines in the micro-PL spectra and a pronounced anti-bunching signature of single photon emission in the photon correlation experiments. When the nanowire is perturbed by the propagating SAW, the embedded QD is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling, giving rise to a spectral fine-tuning within a ~1.5 meV bandwidth at the acoustic frequency of ~330 MHz. This outcome can be further combined with spectral detection filtering for temporal control of the emitted photons. The effect of the SAW piezoelectric field on the QD charge population and on the optical polarization degree is also observed. The advantage of the acousto-optoelectric over other control schemes is that it allows in-situ manipulation of the optical emission properties over a wide frequency range (up to GHz frequencies).
  • Item
    Asymmetric g Tensor in Low-Symmetry Two-Dimensional Hole Systems
    (College Park, Md. : APS, 2018-6-18) Gradl, C.; Winkler, R.; Kempf, M.; Holler, J.; Schuh, D.; Bougeard, D.; Hernández-Mínguez, A.; Biermann, K.; Santos, P.V.; Schüller, C.; Korn, T.
    The complex structure of the valence band in many semiconductors leads to multifaceted and unusual properties for spin-3/2 hole systems compared to common spin-1/2 electron systems. In particular, two-dimensional hole systems show a highly anisotropic Zeeman interaction. We have investigated this anisotropy in GaAs/AlAs quantum well structures both experimentally and theoretically. By performing time-resolved Kerr rotation measurements, we found a nondiagonal tensor g that manifests itself in unusual precessional motion, as well as distinct dependencies of hole-spin dynamics on the direction of the magnetic field B. We quantify the individual components of the tensor g for [113]-, [111]-, and [110]-grown samples. We complement the experiments by a comprehensive theoretical study of Zeeman coupling in in-plane and out-of-plane fields B. To this end, we develop a detailed multiband theory for the tensor g. Using perturbation theory, we derive transparent analytical expressions for the components of the tensor g that we complement with accurate numerical calculations based on our theoretical framework. We obtain very good agreement between experiment and theory. Our study demonstrates that the tensor g is neither symmetric nor antisymmetric. Opposite off-diagonal components can differ in size by up to an order of magnitude. The tensor g encodes not only the Zeeman energy splitting but also the direction of the axis about which the spins precess in the external field B. In general, this axis is not aligned with B. Hence our study extends the general concept of optical orientation to the regime of nontrivial Zeeman coupling.
  • Item
    Faceting and metal-exchange catalysis in (010) β-Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy
    (New York : American Institute of Physics, 2018) Mazzolini, P.; Vogt, P.; Schewski, R.; Wouters, C.; Albrecht, M.; Bierwagen, Oliver
    We here present an experimental study on (010)-oriented -Ga2O3 thin films homoepitaxially grown by plasma assisted molecular beam epitaxy. We study the effect of substrate treatments (i.e., O-plasma and Ga-etching) and several deposition parameters (i.e., growth temperature and metal-to-oxygen flux ratio) on the resulting Ga2O3 surface morphology and growth rate. In situ and ex-situ characterizations identified the formation of (110) and (¯110)-facets on the nominally oriented (010) surface induced by the Ga-etching of the substrate and by several growth conditions, suggesting (110) to be a stable (yet unexplored) substrate orientation. Moreover, we demonstrate how metal-exchange catalysis enabled by an additional In-flux significantly increases the growth rate (>threefold increment) of monoclinic Ga2O3 at high growth temperatures, while maintaining a low surface roughness (rms < 0.5 nm) and preventing the incorporation of In into the deposited layer. This study gives important indications for obtaining device-quality thin films and opens up the possibility to enhance the growth rate in -Ga2O3 homoepitaxy on different surfaces [e.g., (100) and (001)] via molecular beam epitaxy.
  • Item
    Selective area growth of AlGaN nanopyramid arrays on graphene by metal-organic vapor phase epitaxy
    (Melville, NY : American Inst. of Physics, 2018) Munshi, A. Mazid; Kim, Dong-Chul; Heimdal, Carl Philip; Heilmann, Martin; Christiansen, Silke H.; Vullum, Per Erik; van Helvoort, Antonius T. J.; Weman, Helge
    Wide-bandgap group III-nitride semiconductors are of special interest for applications in ultraviolet light emitting diodes, photodetectors, and lasers. However, epitaxial growth of high-quality III-nitride semiconductors on conventional single-crystalline substrates is challenging due to the lattice mismatch and differences in the thermal expansion coefficients. Recently, it has been shown that graphene, a two-dimensional material, can be used as a substrate for growing high-quality III-V semiconductors via quasi-van der Waals epitaxy and overcome the named challenges. Here, we report selective area growth of AlGaN nanopyramids on hole mask patterned single-layer graphene using metal-organic vapor phase epitaxy. The nanopyramid bases have a hexagonal shape with a very high nucleation yield. After subsequent AlGaN/GaN/AlGaN overgrowth on the six {10 (1) over bar1} semi-polar side facets of the nanopyramids, intense room-temperature cathodoluminescence emission is observed at 365 nm with whispering gallery-like modes. This work opens up a route for achieving III-nitride opto-electronic devices on graphene substrates in the ultraviolet region for future applications.
  • Item
    Anisotropic optical properties of highly doped rutile SnO2: Valence band contributions to the Burstein-Moss shift
    (New York : American Institute of Physics, 2018) Feneberg, Martin; Lidig, Christian; White, Mark E.; Tsai, Min Y.; Speck, James S.; Bierwagen, Oliver; Galazka, Zbigniew; Goldhahn, Rüdiger
    The interband absorption of the transparent conducting semiconductor rutile stannic oxide (SnO2) is investigated as a function of increasing free electron concentration. The anisotropic dielectric functions of SnO2:Sb are determined by spectroscopic ellipsometry. The onsets of strong interband absorption found at different positions shift to higher photon energies with increasing free carrier concentration. For the electric field vector parallel to the optic axis, a low energy shoulder increases in prominence with increasing free electron concentration. We analyze the influence of different many-body effects and can model the behavior by taking into account bandgap renormalization and the Burstein-Moss effect. The latter consists of contributions from the conduction and the valence bands which can be distinguished because the nonparabolic conduction band dispersion of SnO2 is known already with high accuracy. The possible originsof the shoulder are discussed. The most likely mechanism is identified to be interband transitions at jkj > 0 from a dipole forbidden valence band.
  • Item
    Mapping the band structure of GeSbTe phase change alloys around the Fermi level
    (London : Nature Publishing Group, 2018) Kellner, J.; Bihlmayer, G.; Liebmann, M.; Otto, S.; Pauly, C.; Boschker, J.E.; Bragaglia, V.; Cecchi, S.; Wang, R.N.; Deringer, V.L.; Küppers, P.; Bhaskar, P.; Golias, E.; Sánchez-Barriga, J.; Dronskowski, R.; Fauster, T.; Rader, O.; Calarco, R.; Morgenstern, M.
    Phase change alloys are used for non-volatile random-access memories exploiting the conductivity contrast between amorphous and metastable, crystalline phase. However, this contrast has never been directly related to the electronic band structure. Here we employ photoelectron spectroscopy to map the relevant bands for metastable, epitaxial GeSbTe films. The constant energy surfaces of the valence band close to the Fermi level are hexagonal tubes with little dispersion perpendicular to the (111) surface. The electron density responsible for transport belongs to the tails of this bulk valence band, which is broadened by disorder, i.e., the Fermi level is 100 meV above the valence band maximum. This result is consistent with transport data of such films in terms of charge carrier density and scattering time. In addition, we find a state in the bulk band gap with linear dispersion, which might be of topological origin.
  • Item
    Multiharmonic Frequency-Chirped Transducers for Surface-Acoustic-Wave Optomechanics
    (College Park, Md. [u.a.] : American Physical Society, 2018) Weiß, Matthias; Hörner, Andreas L.; Zallo, Eugenio; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G.; Wixforth, Achim; Krenner, Hubert J.
    Wide-passband interdigital transducers are employed to establish a stable phase lock between a train of laser pulses emitted by a mode-locked laser and a surface acoustic wave generated electrically by the transducer. The transducer design is based on a multiharmonic split-finger architecture for the excitation of a fundamental surface acoustic wave and a discrete number of its overtones. Simply by introducing a variation of the transducer's periodicity p, a frequency chirp is added. This combination results in wide frequency bands for each harmonic. The transducer's conversion efficiency from the electrical to the acoustic domain is characterized optomechanically using single quantum dots acting as nanoscale pressure sensors. The ability to generate surface acoustic waves over a wide band of frequencies enables advanced acousto-optic spectroscopy using mode-locked lasers with fixed repetition rate. Stable phase locking between the electrically generated acoustic wave and the train of laser pulses is confirmed by performing stroboscopic spectroscopy on a single quantum dot at a frequency of 320 MHz. Finally, the dynamic spectral modulation of the quantum dot is directly monitored in the time domain combining stable phase-locked optical excitation and time-correlated single-photon counting. The demonstrated scheme will be particularly useful for the experimental implementation of surface-acoustic-wave-driven quantum gates of optically addressable qubits or collective quantum states or for multicomponent Fourier synthesis of tailored nanomechanical waveforms.
  • Item
    Electronic properties of wurtzite GaAs: A correlated structural, optical, and theoretical analysis of the same polytypic GaAs nanowire
    (Heidelberg : Springer, 2018) Senichev, Alexander; Corfdir, Pierre; Brandt, Oliver; Ramsteiner, Manfred; Breuer, Steffen; Schilling, Jörg; Geelhaar, Lutz; Werner, Peter
    III-V compound semiconductor nanowires are generally characterized by the coexistence of zincblende and wurtzite structures. So far, this polytypism has impeded the determination of the electronic properties of the metastable wurtzite phase of GaAs, which thus remain highly controversial. In an effort to obtain new insights into this topic, we cross-correlate nanoscale spectral imaging by near-field scanning optical microscopy with a transmission electron microscopy analysis of the very same polytypic GaAs nanowire dispersed onto a Si wafer. Thus, spatially resolved photoluminescence spectra could be unambiguously assigned to nanowire segments whose structure is known with lattice-resolved accuracy. An emission energy of 1.528 eV was observed from extended zincblende segments, revealing that the dispersed nanowire was under uniaxial strain presumably due to interaction with its supporting substrate. These crucial information and the emission energy obtained for extended pure wurtzite segments were used to perform envelope function calculations of zincblende quantum disks in a wurtzite matrix as well as the inverse structure. In these calculations, we varied the fundamental bandgap, the electron mass, and the band offset between zincblende and wurtzite GaAs. From this multi-parameter comparison with the experimental data, we deduced that the bandgap between the Γ8 conduction and A valence band ranges from 1.532 to 1.539 eV in strain-free wurtzite GaAs, and estimated values of 1.507 to 1.514 eV for the Γ7–A bandgap. Address correspondence
  • Item
    In-situ transmission electron microscopy on high-temperature phase transitions of Ge-Sb-Te alloys
    (Berlin : Humboldt-Universität zu Berlin, 2018) Berlin, Katja
    Das Hochtemperaturverhalten beeinflusst viele verschiedene Prozesse von der Materialherstellung bis hin zur technologischen Anwendung. In-situ Transmissionselektronenmikroskopie (TEM) bietet die Möglichkeit, die atomaren Prozesse während struktureller Phasenübergänge direkt und in Realzeit zu beobachten. In dieser Arbeit wurde in-situ TEM angewendet, um die Reversibilität des Schmelz- und Kristallisationsprozesses, sowie das anisotropen Sublimationsverhaltens von Ge-Sb-Te (GST) Dünnschichten zu untersuchen. Die gezielte Probenpräparation für die erfolgreiche Beobachtung der Hochtemperatur-Phasenübergänge wird hervorgehoben. Die notwendige Einkapselung für die Beobachtung der Flüssigphase unter Vakuumbedingungen und die erforderliche sauberer Oberfläche für den Sublimationsprozess werden detailliert beschrieben. Außerdem wird die Elektronenenergieverlustspektroskopie eingesetzt um die lokale chemische Zusammensetzung vor und nach den Übergängen zu bestimmen. Die Untersuchung der Grenzflächenstruktur und Dynamik sowohl beim Phasenübergang fest-flüssig als auch flüssig-fest zeigt Unterschiede zwischen den beiden Vorgängen. Die trigonale Phase von GST weist beim Schmelzen eine teilweise geordnete Übergangszone an der fest-flüssig-Grenzfläche auf, während ein solcher Zwischenzustand bei der Erstarrung nicht entsteht. Außerdem läuft der Schmelzvorgang zeitlich linear ab, während die Kristallisation durch eine Wurzelabhängigkeit von der Zeit mit überlagerter Start-Stopp-Bewegung beschrieben werden kann. Der Einfluss der Substrat-Grenzfläche wird diskutiert und die Oberflächenenergie von GST bestimmt. Die anisotrope Dynamik führt beim Phasenübergang fest-gasförmig der kubischen Phase von GST zur Ausbildung stabiler {111} Facetten. Dies erfolgt über die Bildung von Kinken und Stufen auf stabilen Terrassen. Die Keimbildungsrate und die bevorzugten Keimbildungsorte der Kinken wurden identifiziert und stimmen mit den Voraussagen des Terrassen-Stufen-Kinken Modells überein.
  • Item
    Terahertz quantum-cascade lasers for spectroscopic applications
    (Berlin : Technische Universität Berlin, 2018) Röben, Benjamin Malte; Grahn, Holger T.
    Terahertz (THz) quantum-cascade lasers (QCLs) are unipolar semiconductor heterostructure lasers that emit in the far-infrared spectral range. They are very attractive radiation sources for spectroscopy, since they are very compact and exhibit typical output powers of severalmWas well as linewidths in the MHz to kHz range. This thesis presents the development of methods to tailor the emission characteristics of THz QCLs and employ them for spectroscopy with highest resolution and sensitivity. In many cases, these spectroscopic applications require that the far-field distribution of the THz QCLs exhibits only a single lobe. However, multiple lobes in the far-field distribution of THz QCLs were experimentally observed, which were unambiguously attributed to the typically employed mounting geometry and to the cryogenic operation environment such as the optical window. Based on these results, a method to obtain a single-lobed far-field distribution is demonstrated. A critical requirement to employ a THz QCL for high-resolution spectroscopy of a single absorption or emission line is the precise control of its emission frequency. This long-standing problem is solved by a newly developed technique relying on the mechanical polishing of the front facet. A QCL fabricated in this manner allows for spectroscopy at a maximal resolution in the MHz to kHz range, but its accessible bandwidth is usually limited to a few GHz. In contrast, a newly developed method to utilize QCLs as sources for THz Fourier transform spectrometers enables highly sensitive spectroscopy over a significantly larger bandwidth of at least 72 GHz with a maximal resolution of typically 100 MHz. The application of QCLs as sources for THz Fourier transform spectroscopy leads to a signal-to-noise ratio and dynamic range that is substantially increased by a factor of 10 to 100 as compared to conventional sources. The results presented in this thesis pave the way to routinely employ THz QCLs for spectroscopic applications in the near future.