Search Results

Now showing 1 - 10 of 20
  • Item
    Microstructural Characterization of a Laser Surface Remelted Cu-Based Shape Memory Alloy
    (São Carlos : [Verlag nicht ermittelbar], 2018-4-12) da Silva, Murillo Romero; Gargarella, Piter; Wolf, Witor; Gustmann, Tobias; Kiminami, Claudio Shyinti; Pauly, Simon; Eckert, Jürgen; Bolfarini, Claudemiro
    Cu-based shape memory alloys (SMAs) present some advantages as higher transformation temperatures, lower costs and are easier to process than traditional Ti-based SMAs but they also show some disadvantages as low ductility and higher tendency for intergranular cracking. Several studies have sought for a way to improve the mechanical properties of these alloys and microstructural refinement has been frequently used. It can be obtained by laser remelting treatments. The aim of the present work was to investigate the influence of the laser surface remelting on the microstructure of a Cu-11.85Al-3.2Ni-3Mn (wt%) SMA. Plates were remelted using three different laser scanning speeds, i.e. 100, 300 and 500 mm/s. The remelted regions showed a T-shape morphology with a mean thickness of 52, 29 and 23 µm and an average grain size of 30, 29 and 23µm for plates remelted using scanning speed of 100, 300 and 500 mm/s, respectively. In the plates remelted with 100 and 300 mm/s some pores were found at the root of the keyhole due to the keyhole instability. We find that the instability of keyholes becomes more pronounced for lower scanning speeds. It was not observed any preferential orientation introduced by the laser treatment.
  • Item
    The Influence of the Composition of Ru100−xAlx (x = 50, 55, 60, 67) Thin Films on Their Thermal Stability
    (Basel : MDPI, 2017-3-10) Seifert, Marietta; Rane, Gayatri K.; Oswald, Steffen; Menzel, Siegfried B.; Gemming, Thomas
    RuAl thin films possess a high potential as a high temperature stable metallization for surface acoustic wave devices. During the annealing process of the Ru-Al films, Al2O3 is formed at the surface of the films even under high vacuum conditions, so that the composition of a deposited Ru50Al50 film is shifted to a Ru-rich alloy. To compensate for this effect, the Al content is systematically increased during the deposition of the Ru-Al films. Three Al-rich alloys—Ru45Al55, Ru40Al60 and Ru33Al67—were analyzed concerning their behavior after high temperature treatment under high vacuum and air conditions in comparison to the initial Ru50Al50 sample. Although the films’ cross sections show a more homogeneous structure in the case of the Al-rich films, the RuAl phase formation is reduced with increasing Al content.
  • Item
    Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells
    (Basel : MDPI, 2017-3-1) Hengst, Claudia; Menzel, Siegfried B.; Rane, Gayatri K.; Smirnov, Vladimir; Wilken, Karen; Leszczynska, Barbara; Fischer, Dustin; Prager, Nicole
    The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Young’s modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grain–subgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service.
  • Item
    Revealing Grain Boundary Sliding from Textures of a Deformed Nanocrystalline Pd–Au Alloy
    (Basel : MDPI, 2018-1-25) Toth, Laszlo S.; Skrotzki, Werner; Zhao, Yajun; Pukenas, Aurimas; Braun, Christian; Birringer, Rainer
    Employing a recent modeling scheme for grain boundary sliding [Zhao et al. Adv. Eng. Mater. 2017, doi:10.1002/adem.201700212], crystallographic textures were simulated for nanocrystalline fcc metals deformed in shear compression. It is shown that, as grain boundary sliding increases, the texture strength decreases while the signature of the texture type remains the same. Grain boundary sliding affects the texture components differently with respect to intensity and angular position. A comparison of a simulation and an experiment on a Pd–10 atom % Au alloy with a 15 nm grain size reveals that, at room temperature, the predominant deformation mode is grain boundary sliding contributing to strain by about 60%.
  • Item
    Effect of Alloying Elements in Melt Spun Mg-alloys for Hydrogen Storage
    (São Carlos : SciELO - Scientific Electronic Library Online, 2016) Rozenberg, Silvia; Saporiti, Fabiana; Lang, Julien; Audebert, Fernando; Botta, Pablo; Stoica, Mihai; Huot, Jacques; Eckert, Jürgen
    In this paper we report the effect of alloying elements on hydrogen storage properties of melt-spun Mg-based alloys. The base alloys Mg90Si10, Mg90Cu10, Mg65Cu35 (at%) were studied. We also investigated the effect of rare earths (using MM: mischmetal) and Al in Mg65Cu25Al10, Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys. All the melt-spun alloys without MM show a crystalline structure, and the Mg65Cu25MM10 and Mg65Cu10Al15MM10 alloys showed an amorphous and partially amorphous structure respectively. At 350˚C all the alloys had a crystalline structure during the hydrogen absorption-desorption tests. It was observed that Si and Cu in the binaries alloys hindered completely the activation of the hydrogen absorption. The partial substitution of Cu by MM or Al allowed activation. The combined substitution of Cu by MM and Al showed the best results with the fastest absorption and desorption kinetics, which suggests that this combination can be used for new Mg-alloys to improve hydrogen storage properties.
  • Item
    Cryogenic-temperature-induced structural transformation of a metallic glass
    (London [u.a.] : Taylor & Francis, 2016-11-30) Bian, Xilei; Wang, Gang; Wang, Qing; Sun, Baoan; Hussain, Ishtiaq; Zhai, Qijie; Mattern, Norbert; Bednarčík, Jozef; Eckert, Jürgen
    The plasticity of metallic glasses depends largely on the atomic-scale structure. However, the details of the atomic-scale structure, which are responsible for their properties, remain to be clarified. In this study, in-situ high-energy synchrotron X-ray diffraction and strain-rate jump compression tests at different cryogenic temperatures were carried out. We show that the activation volume of flow units linearly depends on temperature in the non-serrated flow regime. A plausible atomic deformation mechanism is proposed, considering that the activated flow units mediating the plastic flow originate from the medium-range order and transit to the short-range order with decreasing temperature.
  • Item
    In Situ Room Temperature Electron-Beam Driven Graphene Growth from Hydrocarbon Contamination in a Transmission Electron Microscope
    (Basel : MDPI, 2018-5-26) Rummeli, Mark H.; Pan, Yumo; Zhao, Liang; Gao, Jing; Ta, Huy Q.; Martinez, Ignacio G.; Mendes, Rafael G.; Gemming, Thomas; Fu, Lei; Bachmatiuk, Alicja; Liu, Zhongfan
    The excitement of graphene (as well as 2D materials in general) has generated numerous procedures for the fabrication of graphene. Here we present a mini-review on a rather less known, but attractive, in situ means to fabricate graphene inside a transmission electron microscope (TEM). This is achieved in a conventional TEM (viz. no sophisticated specimen holders or microscopes are required) and takes advantage of inherent hydrocarbon contamination as a carbon source. Both catalyst free and single atom catalyst approaches are reviewed. An advantage of this technique is that not only can the growth process be imaged in situ, but this can also be achieved with atomic resolution. Moreover, in the future, one can anticipate such approaches enabling the growth of nano-materials with atomic precision.
  • Item
    The Aerosol Deposition Method: A Modified Aerosol Generation Unit to Improve Coating Quality
    (Basel : MDPI, 2018-9-1) Hanft, Dominik; Glosse, Philipp; Denneler, Stefan; Berthold, Thomas; Oomen, Marijn; Kauffmann-Weiss, Sandra; Weis, Frederik; Häßler, Wolfgang; Holzapfel, Bernhard; Moos, Ralf
    Owing to its ability to produce dense thick-films at room temperature directly from a ceramic powder, the Aerosol Deposition Method (AD) possesses a unique feature in ceramics processing. For this technology, the aerosol generation of particles is a decisive part of reliable process control. However, there has only been a small amount of work published addressing this topic. In this work, we compare the aerosolization and deposition behavior of a fluidized bed generator with an aerosol generator with the rotary brush principle. While film properties very much depend on deposition time for the fluidized bed generator, films produced with the brush generator show a constant film profile, and their film thickness correlates with the controllable aerosol concentration and the duration of deposition. This type of aerosol generation may improve the setup towards a more reliable AD process.
  • Item
    Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads
    (Basel : MDPI, 2018-4-24) Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Waske, Anja; Krüger, Lutz; Martin, Ulrich
    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading.
  • Item
    The Effects of Excess Co on the Phase Composition and Thermoelectric Properties of Half-Heusler NbCoSb
    (Basel : MDPI, 2018-5-11) Huang, Lihong; Wang, Junchen; Chen, Xi; He, Ran; Shuai, Jing; Zhang, Jianjun; Zhang, Qinyong; Ren, Zhifeng
    NbCoSb with nominal 19 valence electrons, and is supposed to be metallic, has recently been reported to also exhibit the thermoelectric properties of a heavily doped n-type semiconductor. In this study, we prepared Co-rich NbCo1+xSb samples (x = 0, 0.2, 0.3, 0.4, 0.5), and their phase compositions, microstructures and thermoelectric properties were investigated. The Seebeck coefficient increased a great deal with increasing x, due to decreasing carrier concentration, and the total thermal conductivity reduced mainly because of declining κe. Finally, a peak thermoelectric figure of merit, ZT, was about 0.46 for NbCo1.3Sb at 973 K. This enhancement was mainly attributed to the reduction of electric thermal conductivity and the increase of Seebeck coefficient. The excess Co had effects on the carrier concentration, deformation potential Edef and DOS effective mass m*. Adding an excessive amount of Co leads to a very high Edef, which was detrimental for transport characteristics.