Search Results

Now showing 1 - 10 of 180
  • Item
    Self-Regenerating Soft Biophotovoltaic Devices
    (Washington, DC : ACS Publications, 2018) Qiu, Xinkai; Castañeda Ocampo, Olga; de Vries, Hendrik W.; van Putten, Maikel; Loznik, Mark; Herrmann, Andreas; Chiechi, Ryan C.
    This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms. © 2018 American Chemical Society.
  • Item
    Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance
    (Washington, DC : Soc., 2018) Kuttner, Christian; Mayer, Martin; Dulle, Martin; Moscoso, Ana; López-Romero, Juan Manuel; Förster, Stephan; Fery, Andreas; Pérez-Juste, Jorge; Contreras-Cáceres, Rafael
    We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV–vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10–8–10–9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.
  • Item
    Mechanical Robustness of Graphene on Flexible Transparent Substrates
    (Washington, DC : Soc., 2016) Kang, Moon H.; Prieto López, Lizbeth O.; Chen, Bingan; Teo, Ken; Williams, John A.; Milne, William I.; Cole, Matthew T.
    This study reports on a facile and widely applicable method of transferring chemical vapor deposited (CVD) graphene uniformly onto optically transparent and mechanically flexible substrates using commercially available, low-cost ultraviolet adhesive (UVA) and hot-press lamination (HPL). We report on the adhesion potential between the graphene and the substrate, and we compare these findings with those of the more commonly used cast polymer handler transfer processes. Graphene transferred with the two proposed methods showed lower surface energy and displayed a higher degree of adhesion (UVA: 4.40 ± 1.09 N/m, HPL: 0.60 ± 0.26 N/m) compared to equivalent CVD-graphene transferred using conventional poly(methyl methacrylate) (PMMA: 0.44 ± 0.06 N/m). The mechanical robustness of the transferred graphene was investigated by measuring the differential resistance as a function of bend angle and repeated bend–relax cycles across a range of bend radii. At a bend angle of 100° and a 2.5 mm bend radius, for both transfer techniques, the normalized resistance of graphene transferred on polyethylene terephthalate (PET) was around 80 times less than that of indium–tin oxide on PET. After 104 bend cycles, the resistance of the transferred graphene on PET using UVA and HPL was found to be, on average, around 25.5 and 8.1% higher than that of PMMA-transferred graphene, indicating that UVA- and HPL-transferred graphene are more strongly adhered compared to PMMA-transferred graphene. The robustness, in terms of maintained electrical performance upon mechanical fatigue, of the transferred graphene was around 60 times improved over ITO/PET upon many thousands of repeated bending stress cycles. On the basis of present production methods, the development of the next-generation of highly conformal, diverse form factor electronics, exploiting the emerging family of two-dimensional materials, necessitates the development of simple, low-cost, and mechanically robust transfer processes; the developed UVA and HPL approaches show significant potential and allow for large-area-compatible, near-room temperature transfer of graphene onto a diverse range of polymeric supports.
  • Item
    In-Gel Direct Laser Writing for 3D-Designed Hydrogel Composites That Undergo Complex Self-Shaping
    (Weinheim : Wiley-VCH, 2017) Nishiguchi, Akihiro; Mourran, Ahmed; Zhang, Hang; Möller, Martin
    Self-shaping and actuating materials inspired by biological system have enormous potential for biosensor, microrobotics, and optics. However, the control of 3D-complex microactuation is still challenging due to the difficulty in design of nonuniform internal stress of micro/nanostructures. Here, we develop in-gel direct laser writing (in-gel DLW) procedure offering a high resolution inscription whereby the two materials, resin and hydrogel, are interpenetrated on a scale smaller than the wavelength of the light. The 3D position and mechanical properties of the inscribed structures could be tailored to a resolution better than 100 nm over a wide density range. These provide an unparalleled means of inscribing a freely suspended microstructures of a second material like a skeleton into the hydrogel body and also to direct isotropic volume changes to bending and distortion motions. In the combination with a thermosensitive hydrogel rather small temperature variations could actuate large amplitude motions. This generates complex modes of motion through the rational engineering of the stresses present in the multicomponent material. More sophisticated folding design would realize a multiple, programmable actuation of soft materials. This method inspired by biological system may offer the possibility for functional soft materials capable of biomimetic actuation and photonic crystal application.
  • Item
    Photo-Cross-Linked Dual-Responsive Hollow Capsules Mimicking Cell Membrane for Controllable Cargo Post-Encapsulation and Release
    (Weinheim : Wiley-VCH, 2016) Liu, Xiaoling; Appelhans, Dietmar; Wei, Qiang; Voit, Brigitte
    Multifunctional and responsive hollow capsules are ideal candidates to establish highly sophisticated compartments mimicking cell membranes for controllable bio-inspired functions. For this purpose pH and temperature dual-responsive and photo-cross-linked hollow capsules, based on silica-templated layer-by-layer approach by using poly(N-isopropyl acrylamide)-blockpolymethacrylate) and polyallylamine, have been prepared to use them for the subsequent and easily available post-encapsulation process of proteinlike macromolecules at room temperature and pH 7.4 and their controllable release triggered by stimuli. The uptake and release properties of the hollow capsules for cargos are highly affected by changes in the external stimuli temperature (25, 37, or 45 °C) and internal stimuli pH of the phosphate-containing buffer solution (5.5 or 7.4), by the degree of photo-cross-linking, and the size of cargo. The photo-cross-linked and dual stimuli-responsive hollow capsules with different membrane permeability can be considered as attractive material for mimicking cell functions triggered by controllable uptake and release of different up to 11 nm sized biomolecules.
  • Item
    Integrated Energy System Optimization Based on Standardized Matrix Modeling Method
    (Basel : MDPI, 2018-11-23) Li, Jingchao; Ying, Yulong; Lou, Xingdan; Fan, Juanjuan; Chen, Yunlongyu; Bi, Dongyuan
    Aiming at the optimization of an integrated energy system, a standardized matrix modeling method and optimization method for an integrated energy system is proposed. Firstly, from the perspective of system engineering, the energy flow between energy conversion devices is used as a state variable to deal with nonlinear problems caused by the introduction of scheduling factors, and a standardized matrix model of the integrated energy system is constructed. Secondly, based on the proposed model, the structural optimization (i.e., energy flow structure and equipment type), design optimization (i.e., equipment capacity and quantity), and operation optimization for the integrated energy system can be achieved. The simulation case studies have shown that the proposed integrated energy system standardized matrix modeling method and optimization method are both simple and efficient, and can be effectively used to decide the system components and their interconnections, and the technical characteristics and daily operating strategy of the system components.
  • Item
    Propagating Surface Plasmon Polaritons: Towards Applications for Remote-Excitation Surface Catalytic Reactions
    (Weinheim : Wiley-VCH, 2015) Zhang, Zhenglong; Fang, Yurui; Wang, Wenhui; Chen, Li; Sun, Mengtao
    Plasmonics is a well-established field, exploiting the interaction of light and metals at the nanoscale; with the help of surface plasmon polaritons, remote-excitation can also be observed by using silver or gold plasmonic waveguides. Recently, plasmonic catalysis was established as a new exciting platform for heterogeneous catalytic reactions. Recent reports present remote-excitation surface catalytic reactions as a route to enhance the rate of chemical reactions, and offer a pathway to control surface catalytic reactions. In this review, we focus on recent advanced reports on silver plasmonic waveguide for remote-excitation surface catalytic reactions. First, the synthesis methods and characterization techniques of sivelr nanowire plasmonic waveguides are summarized, and the properties and physical mechanisms of plasmonic waveguides are presented in detail. Then, the applications of plasmonic waveguides including remote excitation fluorescence and SERS are introduced, and we focus on the field of remote-excitation surface catalytic reactions. Finally, forecasts are made for possible future applications for the remote-excitation surface catalysis by plasmonic waveguides in living cells.
  • Item
    Advanced GeSn/SiGeSn Group IV Heterostructure Lasers
    (Weinheim : Wiley-VCH, 2018) von den Driesch, Nils; Stange, Daniela; Rainko, Denis; Povstugar, Ivan; Zaumseil, Peter; Capellini, Giovanni; Schröder, Thomas; Denneulin, Thibaud; Ikonic, Zoran; Hartmann, Jean-Michel; Sigg, Hans; Mantl, Siegfried; Grützmacher, Detlev; Buca, Dan
    Growth and characterization of advanced group IV semiconductor materials with CMOS-compatible applications are demonstrated, both in photonics. The investigated GeSn/SiGeSn heterostructures combine direct bandgap GeSn active layers with indirect gap ternary SiGeSn claddings, a design proven its worth already decades ago in the III–V material system. Different types of double heterostructures and multi-quantum wells (MQWs) are epitaxially grown with varying well thicknesses and barriers. The retaining high material quality of those complex structures is probed by advanced characterization methods, such as atom probe tomography and dark-field electron holography to extract composition parameters and strain, used further for band structure calculations. Special emphasis is put on the impact of carrier confinement and quantization effects, evaluated by photoluminescence and validated by theoretical calculations. As shown, particularly MQW heterostructures promise the highest potential for efficient next generation complementary metal-oxide-semiconductor (CMOS)-compatible group IV lasers.
  • Item
    CHASE-PL—Future Hydrology Data Set: Projections of Water Balance and Streamflow for the Vistula and Odra Basins, Poland
    (Basel : MDPI, 2017) Piniewski, Mikołaj; Szcześniak, Mateusz; Kardel, Ignacy
    There is considerable concern that the water resources of Central and Eastern Europe region can be adversely affected by climate change. Projections of future water balance and streamflow conditions can be obtained by forcing hydrological models with the output from climate models. In this study, we employed the SWAT hydrological model driven with an ensemble of nine bias-corrected EURO-CORDEX climate simulations to generate future hydrological projections for the Vistula and Odra basins in two future horizons (2024–2050 and 2074–2100) under two Representative Concentration Pathways (RCPs). The data set consists of three parts: (1) model inputs; (2) raw model outputs; (3) aggregated model outputs. The first one allows the users to reproduce the outputs or to create the new ones. The second one contains the simulated time series of 10 variables simulated by SWAT: precipitation, snow melt, potential evapotranspiration, actual evapotranspiration, soil water content, percolation, surface runoff, baseflow, water yield and streamflow. The third one consists of the multi-model ensemble statistics of the relative changes in mean seasonal and annual variables developed in a GIS format. The data set should be of interest of climate impact scientists, water managers and water-sector policy makers. In any case, it should be noted that projections included in this data set are associated with high uncertainties explained in this data descriptor paper.
  • Item
    Microstructural Characterization of a Laser Surface Remelted Cu-Based Shape Memory Alloy
    (São Carlos : [Verlag nicht ermittelbar], 2018-4-12) da Silva, Murillo Romero; Gargarella, Piter; Wolf, Witor; Gustmann, Tobias; Kiminami, Claudio Shyinti; Pauly, Simon; Eckert, Jürgen; Bolfarini, Claudemiro
    Cu-based shape memory alloys (SMAs) present some advantages as higher transformation temperatures, lower costs and are easier to process than traditional Ti-based SMAs but they also show some disadvantages as low ductility and higher tendency for intergranular cracking. Several studies have sought for a way to improve the mechanical properties of these alloys and microstructural refinement has been frequently used. It can be obtained by laser remelting treatments. The aim of the present work was to investigate the influence of the laser surface remelting on the microstructure of a Cu-11.85Al-3.2Ni-3Mn (wt%) SMA. Plates were remelted using three different laser scanning speeds, i.e. 100, 300 and 500 mm/s. The remelted regions showed a T-shape morphology with a mean thickness of 52, 29 and 23 µm and an average grain size of 30, 29 and 23µm for plates remelted using scanning speed of 100, 300 and 500 mm/s, respectively. In the plates remelted with 100 and 300 mm/s some pores were found at the root of the keyhole due to the keyhole instability. We find that the instability of keyholes becomes more pronounced for lower scanning speeds. It was not observed any preferential orientation introduced by the laser treatment.