Search Results

Now showing 1 - 7 of 7
  • Item
    Iron-Based Binary Catalytic System for the Valorization of CO2 into Biobased Cyclic Carbonates
    (Washington, DC : ACS Publ., 2016) Büttner, Hendrik; Grimmer, Christoph; Steinbauer, Johannes; Werner, Thomas
    The atom economic conversion of epoxidized vegetable oils and fatty acid derivatives with CO2 into cyclic carbonates permits the synthesis of novel oleo compounds from renewable resources as well as the valorization of CO2 as a C1-building block. Organic phosphorus salts proved to be selective catalysts for this reaction. In a widespread screening 11 inexpensive and nontoxic iron salts were evaluated as cocatalysts to enhance the reaction rate. In the presence of 0.25 mol % iron chloride the selectivity and conversion were significantly improved. The reaction parameters were optimized under solvent-free conditions, and the scope and limitation were evaluated for 9 epoxidized fatty acid esters and 4 epoxidized vegetable oils. The biobased carbonates were isolated in excellent yields up to 95% and can be considered to be based on 100% CO2 in respect to carbon. This binary catalyst system features high efficiency and plain simplicity while valorizing CO2 into cyclic carbonates based on renewable feedstocks.
  • Item
    Development of Active and Stable Low Nickel Content Catalysts for Dry Reforming of Methane
    (Basel : MDPI, 2017-5-16) Ha, Quan Luu Manh; Armbruster, Udo; Atia, Hanan; Schneider, Matthias; Lund, Henrik; Agostini, Giovanni; Radnik, Jörg; Vuong, Huyen Thanh; Martin, Andreas
    Methane dry reforming (DRM) was investigated over highly active Ni catalysts with low metal content (2.5 wt %) supported on Mg-Al mixed oxide. The aim was to minimize carbon deposition and metal sites agglomeration on the working catalyst which are known to cause catalyst deactivation. The solids were characterized using N2 adsorption, X-ray diffraction, temperature-programmed reduction, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The results showed that MgO-Al2O3 solid solution phases are obtained when calcining Mg-Al hydrotalcite precursor in the temperature range of 550–800 °C. Such phases contribute to the high activity of catalysts with low Ni content even at low temperature (500 °C). Modifying the catalyst preparation with citric acid significantly slows the coking rate and reduces the size of large octahedrally coordinated NiO-like domains, which may easily agglomerate on the surface during DRM. The most effective Ni catalyst shows a stable DRM course over 60 h at high weight hourly space velocity with very low coke deposition. This is a promising result for considering such catalyst systems for further development of an industrial DRM technology.
  • Item
    Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes
    (London [u.a.] : RSC, 2016) Tolosa, Aura; Krüner, Benjamin; Fleischmann, Simon; Jäckel, Nicolas; Zeiger, Marco; Aslan, Mesut; Grobelsek, Ingrid; Presser, Volker
    This study presents electrospun niobium carbide/carbon (NbC/C) hybrid nanofibers, with an average diameter of 69 ± 30 nm, as a facile precursor to derive either highly nanoporous niobium carbide-derived carbon (NbC–CDC) fibers for supercapacitor applications or niobium pentoxide/carbon (Nb2O5/C) hybrid fibers for battery-like energy storage. In all cases, the electrodes consist of binder-free and free-standing nanofiber mats that can be used without further conductive additives. Chlorine gas treatment conformally transforms NbC nanofiber mats into NbC–CDC fibers with a specific surface area of 1508 m2 g−1. These nanofibers show a maximum specific energy of 19.5 W h kg−1 at low power and 7.6 W h kg−1 at a high specific power of 30 kW kg−1 in an organic electrolyte. CO2 treatment transforms NbC into T-Nb2O5/C hybrid nanofiber mats that provide a maximum capacity of 156 mA h g−1. The presence of graphitic carbon in the hybrid nanofibers enabled high power handling, maintaining 50% of the initial energy storage capacity at a high rate of 10 A g−1 (64 C-rate). When benchmarked for an asymmetric full-cell, a maximum specific energy of 86 W h kg−1 was obtained. The high specific power for both systems, NbC–CDC and T-Nb2O5/C, resulted from the excellent charge propagation in the continuous nanofiber network and the high graphitization of the carbon structure.
  • Item
    Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes
    (Cambridge : RSC, 2017) Chen, Feng; Sahoo, Basudev; Kreyenschulte, Carsten; Lund, Henrik; Zeng, Min; He, Lin; Junge, Kathrin; Beller, Matthias
    Nitrogen modified cobalt catalysts supported on carbon were prepared by pyrolysis of the mixture generated from cobalt(ii) acetate in aqueous solution of melamine or waste melamine resins, which are widely used as industrial polymers. The obtained nanostructured materials catalyze the transfer hydrogenation of N-heteroarenes with formic acid in the absence of base. The optimal Co/Melamine-2@C-700 catalyst exhibits high activity and selectivity for the dehydrogenation of formic acid into molecular hydrogen and carbon dioxide and allows for the reduction of diverse N-heteroarenes including substrates featuring sensitive functional groups.
  • Item
    Judging the feasibility of TiO2 as photocatalyst for chemical energy conversion by quantitative reactivity determinants
    (Cambridge : RSC Publ., 2019) Dilla, Martin; Moustakas, Nikolaos G.; Becerikli, Ahmet E.; Peppel, Tim; Springer, Armin; Schlögl, Robert; Strunk, Jennifer; Ristig, Simon
    In this study we assess the general applicability of the widely used P25-TiO2 in gas-phase photocatalytic CO2 reduction based on experimentally determined reactivity descriptors from classical heterogeneous catalysis (productivity) and photochemistry (apparent quantum yield/AQY). A comparison of the results with reports on the use of P25 for thermodynamically more feasible reactions and our own previous studies on P25-TiO2 as photocatalyst imply that the catalytic functionality of this material, rather than its properties as photoabsorber, limits its applicability in the heterogeneous photocatalytic CO2 reduction in the gas phase. The AQY of IrOx/TiO2 in overall water splitting in a similar high-purity gas-solid process was four times as high, but still far from commercial viability.
  • Item
    Selective Earth-Abundant System for CO2 Reduction: Comparing Photo- and Electrocatalytic Processes
    (Washington, DC : American Chemical Society, 2019) Steinlechner C.; Roesel A.F.; Oberem E.; Päpcke A.; Rockstroh N.; Gloaguen F.; Lochbrunner S.; Ludwig R.; Spannenberg A.; Junge H.; Francke R.; Beller M.
    The valorization of CO2 via photo- or electrocatalytic reduction constitutes a promising approach toward the sustainable production of fuels or value-added chemicals using intermittent renewable energy sources. For this purpose, molecular catalysts are generally studied independently with respect to the photo- or the electrochemical application, although a unifying approach would be much more effective with respect to the mechanistic understanding and the catalyst optimization. In this context, we present a combined photo- and electrocatalytic study of three Mn diimine catalysts, which demonstrates the synergistic interplay between the two methods. The photochemical part of our study involves the development of a catalytic system containing a heteroleptic Cu photosensitizer and the sacrificial BIH reagent. The system shows exclusive selectivity for CO generation and renders turnover numbers which are among the highest reported thus far within the group of fully earth-abundant photocatalytic systems. The electrochemical part of our investigations complements the mechanistic understanding of the photochemical process and demonstrates that in the present case the sacrificial reagent, the photosensitizer, and the irradiation source can be replaced by the electrode and a weak Brønsted acid. © 2019 American Chemical Society.
  • Item
    Dimethyl carbonate synthesis from carbon dioxide using ceria–zirconia catalysts prepared using a templating method: characterization, parametric optimization and chemical equilibrium modeling
    (London : RSC Publishing, 2016) Kumar, Praveen; With, Patrick; Srivastava, Vimal Chandra; Shukla, Kartikeya; Gläser, Roger; Mishra, Indra Mani
    In this paper, a series of CexZr1−xO2 solid solution spheres were synthesized by exo- and endo-templating methods and tested for dimethyl carbonate (DMC) synthesis using direct conversion of CO2. The synthesized catalysts were characterized by X-ray diffraction (XRD), N2-physisorption, scanning electron microscopy (SEM), and CO2/NH3-temperature-programmed desorption (TPD). Formation of CexZr1−xO2 solid solutions with tetragonal and cubic crystal structures depending on cerium/zirconium compositions was confirmed by XRD analysis. The specific surface area of the mixed oxide decreased and the average pore diameter increased with an increase in the ceria content, with the exception of the mixed oxides with x = 0.4–0.5 i.e. Ce0.4Zr0.6O2 and Ce0.5Zr0.5O2. The basic and acidic site density of the synthesized catalysts was in the order: ZrO2 < CeO2 < Ce0.5Zr0.5O2, and the basic and acidic site density per unit area followed the same order. The best Ce0.5Zr0.5O2 catalyst was further used for the optimization of reaction conditions such as reaction time, reaction temperature, catalyst dose and reusability for DMC synthesis. Furthermore, study of chemical equilibrium modeling was done using the Peng–Robinson–Stryjek–Vera equation of state (PRSV-EoS) along with the van der Waals one-fluid reaction condition so as to calculate change of Gibbs free energy (ΔG°) and heat of reaction (ΔH°).