Search Results

Now showing 1 - 3 of 3
  • Item
    From statistic to deterministic nanostructures in fused silica induced by nanosecond laser radiation
    (Amsterdam [u.a.] : Elsevier, 2018) Lorenz, Pierre; Klöppel, Michael; Zagoranskiy, Igor; Zimmer, Klaus
    The production of structures by laser machining below the diffraction limit is still a challenge. However, self-organization processes can be useful. The laser-induced self-organized modification of the shape of photolithographic produced chromium structures on fused silica as well as the structuring of the fused silica surface by nanosecond UV laser radiation was studied, respectively. Low fluence single pulse laser irradiation (□ > 300 mJ/cm2) cause the formation from chromium squares to droplets due to the mass transport in the molten chromium film. This process is governed by the instability of the molten metal due to the surface tension driven liquid phase mass transport. For a chromium pattern size similar to the instability length two specific droplet distributions were found which are single droplets with a determined position near the centre of the original pattern or random distributed smaller droplets arranged circularly. Each of the metal patterns can be transferred into the fused silica by a multi-pulse irradiation. The experimental results can be simulated well for low fluences by sequential solving the heat and Navier-Stokes equation.
  • Item
    Wet-chemical Passivation of Anisotropic Plasmonic Nanoparticles for LSPR-sensing by a Silica Shell
    (Amsterdam [u.a.] : Elsevier, 2015) Thiele, Matthias; Götz, Isabell; Trautmann, Steffen; Müller, Robert; Csáki, Andrea; Henkel, Thomas; Fritzsche, Wolfgang
    Metal nanoparticles showing the effect of localized surface plasmon resonance (LSPR), a collective oscillation of the conduction electrons upon interaction with light, represent an interesting tool for bioanalytics. This resonance is influenced by changes in the environment, and can be therefore used for the detection of molecular layers. The sensitivity, this means the extent of wavelength resonance shift per change in refractive index in the environment, represents an important performance parameter. It is higher for silver compared to gold particles, and is also increased for anisotropic particles. So silver triangles show a high potential for highly sensitive plasmonic nanoparticles. However, the stability under ambient conditions is rather poor. The paper demonstrates the passivation of silver triangles by silica coating using a wet-chemical approach. It compares the sensitivity for particles with and without passivation, and visualizes the passivation effect in a high resolution, single particle TEM study.
  • Item
    In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping
    (Amsterdam : Elsevier, 2017) Diederichs, Annika M.; Thiel, Felix; Lienert, Ulrich; Pantleon, Wolfgang
    A major failure reason for structural materials is fatigue-related damage due to repeatedly changing mechanical loads. During cyclic loading dislocations self-organize into characteristic ordered structures, which play a decisive role for the materials lifetime. These heterogeneous dislocation structures can be identified using advanced electron microscopy and synchrotron techniques. A detailed characterization of the microstructure during cyclic loading by in-situ monitoring the internal structure within individual grains with high energy x-rays can help to understand and predict the materials behavior during cyclic deformation and to improve the material design. While monitoring macroscopic stress and strain during cyclic loading, reciprocal space maps of diffraction peaks from single grains are obtained with high resolution. High Resolution Reciprocal Space Mapping was applied successfully in-situ during cyclic deformation of macroscopic aluminium samples at the Advanced Photon Source to reveal the structural reorganization within single grains embedded in the bulk material during fatigue.