Search Results

Now showing 1 - 10 of 20
  • Item
    The vicinity of hyper-honeycomb β-Li2IrO3 to a three-dimensional Kitaev spin liquid state
    (London : Nature Publishing Group, 2016) Katukuri, Vamshi M.; Yadav, Ravi; Hozoi, Liviu; Nishimoto, Satoshi; van den Brink, Jeroen
    Due to the combination of a substantial spin-orbit coupling and correlation effects, iridium oxides hold a prominent place in the search for novel quantum states of matter, including, e.g., Kitaev spin liquids and topological Weyl states. We establish the promise of the very recently synthesized hyper-honeycomb iridate β-Li2IrO3 in this regard. A detailed theoretical analysis reveals the presence of large ferromagnetic first-neighbor Kitaev interactions, while a second-neighbor antiferromagnetic Heisenberg exchange drives the ground state from ferro to zigzag order via a three-dimensional Kitaev spin liquid and an incommensurate phase. Experiment puts the system in the latter regime but the Kitaev spin liquid is very close and reachable by a slight modification of the ratio between the second- and first-neighbor couplings, for instance via strain.
  • Item
    Quasi one dimensional dirac electrons on the surface of Ru2 Sn3
    (London : Nature Publishing Group, 2014) Gibson, Q.D.; Evtushinsky, D.; Yaresko, A.N.; Zabolotnyy, V.B.; Ali, Mazhar N.; Fuccillo, M.K.; Van den Brink, J.; Büchner, B.; Cava, R.J.; Borisenko, S.V.
    We present an ARPES study of the surface states of Ru2Sn3, a new type of a strong 3D topological insulator (TI). In contrast to currently known 3D TIs, which display two-dimensional Dirac cones with linear isotropic dispersions crossing through one point in the surface Brillouin Zone (SBZ), the surface states on Ru2Sn3 are highly anisotropic, displaying an almost flat dispersion along certain high-symmetry directions. This results in quasi-one dimensional (1D) Dirac electronic states throughout the SBZ that we argue are inherited from features in the bulk electronic structure of Ru2Sn3 where the bulk conduction bands are highly anisotropic. Unlike previous experimentally characterized TIs, the topological surface states of Ru2Sn3 are the result of a d-p band inversion rather than an s-p band inversion. The observed surface states are the topological equivalent to a single 2D Dirac cone at the surface Brillouin zone.
  • Item
    CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography
    (London : Nature Publishing Group, 2013) Wang, Min; Fu, Lei; Gan, Lin; Zhang, Chaohua; Rümmeli, Mark; Bachmatiuk, Alicja; Fang, Ying; Liu, Zhongfan
    Current etching routes to process large graphene sheets into nanoscale graphene so as to open up a bandgap tend to produce structures with rough and disordered edges. This leads to detrimental electron scattering and reduces carrier mobility. In this work, we present a novel yet simple direct-growth strategy to yield graphene nanomesh (GNM) on a patterned Cu foil via nanosphere lithography. Raman spectroscopy and TEM characterizations show that the as-grown GNM has significantly smoother edges than post-growth etched GNM. More importantly, the transistors based on as-grown GNM with neck widths of 65-75 nm have a near 3-fold higher mobility than those derived from etched GNM with the similar neck widths.
  • Item
    Heavy fermion properties of the Kondo Lattice model
    (London : Nature Publishing Group, 2013) Sykora, Steffen; Becker, Klaus W.
    We study the S = 1/2 Kondo lattice model which is widely used to describe heavy fermion behavior. In conventional treatments of the model the Kondo interaction is decoupled in favour of a hybridization of conduction and localized f electrons. However, such an approximation breaks the local gauge symmetry and implicates that the local f-occupation is no longer conserved. To avoid these problems, we use in this work an alternative approach to the model based on the Projective Renormalization Method (PRM). Thereby, within the conduction electron spectral function we identify the lattice Kondo resonance as an almost flat excitation near the Fermi surface which is composed of conduction electron creation operators combined with localized spin fluctuations. This leads to an alternative description of the Kondo resonance without having to resort to an artificial symmetry breaking.
  • Item
    Bottom-up assembly of metallic germanium
    (London : Nature Publishing Group, 2015) Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, LaReine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.
    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm−3) low-resistivity (10−4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.
  • Item
    High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides
    (London : Nature Publishing Group, 2015) Charnukha, A.; Evtushinsky, D.V.; Matt, C.E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N.D.; Batlogg, B.; Borisenko, S.V.
    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.
  • Item
    Universal electronic structure of polar oxide hetero-interfaces
    (London : Nature Publishing Group, 2015) Treske, Uwe; Heming, Nadine; Knupfer, Martin; Büchner, Bernd; Di Gennaro, Emiliano; Khare, Amit; Di Uccio, Umberto Scotti; Granozio, Fabio Miletto; Krause, Stefan; Koitzsch, Andreas
    The electronic properties of NdGaO3/SrTiO3, LaGaO3/SrTiO3, and LaAlO3/SrTiO3 interfaces, all showing an insulator-to-metal transition as a function of the overlayer-thickness, are addressed in a comparative study based on x-ray absorption, x-ray photoemission and resonant photoemission spectroscopy. The nature of the charge carriers, their concentration and spatial distribution as well as the interface band alignments and the overall interface band diagrams are studied and quantitatively evaluated. The behavior of the three analyzed heterostructures is found to be remarkably similar. The valence band edge of all the three overlayers aligns to that of bulk SrTiO3. The near-interface SrTiO3 layer is affected, at increasing overlayer thickness, by the building-up of a confining potential. This potential bends both the valence and the conduction band downwards. The latter one crossing the Fermi energy in the proximity of the interface and determines the formation of an interfacial band offset growing as a function of thickness. Quite remarkably, but in agreement with previous reports for LaAlO3/SrTiO3, no electric field is detected inside any of the polar overlayers. The essential phenomenology emerging from our findings is discussed on the base of different alternative scenarios regarding the origin of interface carriers and their interaction with an intense photon beam.
  • Item
    Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor
    (London : Nature Publishing Group, 2015) Charnukha, A.; Thirupathaiah, S.; Zabolotnyy, V.B.; Büchner, B.; Zhigadlo, N.D.; Batlogg, B.; Yaresko, A.N.; Borisenko, S.V.
    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.
  • Item
    Weak-coupling superconductivity in a strongly correlated iron pnictide
    (London : Nature Publishing Group, 2016) Charnukha, A.; Post, K.W.; Thirupathaiah, S.; Pröpper, D.; Wurmehl, S.; Roslova, M.; Morozov, I.; Büchner, B.; Yaresko, A.N.
    Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Γ point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.
  • Item
    Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance
    (London : Nature Publishing Group, 2016) Niu, Gang; Calka, Pauline; Auf der Maur, Matthias; Santoni, Francesco; Guha, Subhajit; Fraschke, Mirko; Hamoumou, Philippe; Gautier, Brice; Perez, Eduardo; Walczyk, Christian; Wenger, Christian; Di Carlo, Aldo; Alff, Lambert; Schroeder, Thomas
    Filament-type HfO2-based RRAM has been considered as one of the most promising candidates for future non-volatile memories. Further improvement of the stability, particularly at the “OFF” state, of such devices is mainly hindered by resistance variation induced by the uncontrolled oxygen vacancies distribution and filament growth in HfO2 films. We report highly stable endurance of TiN/Ti/HfO2/Si-tip RRAM devices using a CMOS compatible nanotip method. Simulations indicate that the nanotip bottom electrode provides a local confinement for the electrical field and ionic current density; thus a nano-confinement for the oxygen vacancy distribution and nano-filament location is created by this approach. Conductive atomic force microscopy measurements confirm that the filaments form only on the nanotip region. Resistance switching by using pulses shows highly stable endurance for both ON and OFF modes, thanks to the geometric confinement of the conductive path and filament only above the nanotip. This nano-engineering approach opens a new pathway to realize forming-free RRAM devices with improved stability and reliability.