Search Results

Now showing 1 - 10 of 41
  • Item
    Water resources planning in the Upper Niger River basin: Are there gaps between water demand and supply?
    (Amsterdam [u.a.] : Elsevier, 2019) Liersch, Stefan; Fournet, Samuel; Koch, Hagen; Djibo, Abdouramane Gado; Reinhardt, Julia; Kortlandt, Joyce; Van Weert, Frank; Seidou, Ousmane; Klop, Erik; Baker, Chris; Hattermann, Fred F.
    Study region: The Upper Niger and Bani River basins in West Africa. Study focus: The growing demand for food, water, and energy led Mali and Guinea to develop ambitious hydropower and irrigation plans, including the construction of a new dam and the extension of irrigation schemes. These two developments will take place upstream of sensible ecosystem hotspots while the feasibility of development plans in terms of water availability and sustainability is questionable. Where agricultural development in past decades focused mainly on intensifying dry-season crops cultivation, future plans include extension in both the dry and wet seasons. New hydrological insights for the region: Today's irrigation demand corresponds to 7% of the average annual Niger discharge and could account to one third in 2045. An extension of irrigated agriculture is possible in the wet season, while extending dry-season cropping would be largely compromised with the one major existing Sélingué dam. An additional large Fomi or Moussako dam would not completely satisfy dry-season irrigation demands in the 2045 scenario but would reduce the estimated supply gap from 36% to 14%. However, discharge peaks may decrease by 40% reducing the inundated area in the Inner Niger Delta by 21%, while average annual discharge decreases by 30%. Sustainable development should therefore consider investments in water-saving irrigation and management practices to enhance the feasibility of the envisaged irrigation plans instead of completely relying on the construction of a flow regime altering dam. © 2019 The Authors
  • Item
    Climate change impact on regional floods in the Carpathian region
    (Amsterdam [u.a.] : Elsevier, 2019) Didovets, Iulii; Krysanova, Valentina; Bürger, Gerd; Snizhko, Sergiy; Balabukh, Vira; Bronstert, Axel
    Study region: Tisza and Prut catchments, originating on the slopes of the Carpathian mountains. Study focus: The study reported here investigates (i) climate change impacts on flood risk in the region, and (ii) uncertainty related to hydrological modelling, downscaling techniques and climate projections. The climate projections used in the study were derived from five GCMs, downscaled either dynamically with RCMs or with the statistical downscaling model XDS. The resulting climate change scenarios were applied to drive the eco-hydrological model SWIM, which was calibrated and validated for the catchments in advance using observed climate and hydrological data. The changes in the 30-year flood hazards and 98 and 95 percentiles of discharge were evaluated for the far future period (2071–2100) in comparison with the reference period (1981–2010). New hydrological insights for the region: The majority of model outputs under RCP 4.5 show a small to strong increase of the 30-year flood level in the Tisza ranging from 4.5% to 62%, and moderate increase in the Prut ranging from 11% to 22%. The impact results under RCP 8.5 are more uncertain with changes in both directions due to high uncertainties in GCM-RCM climate projections, downscaling methods and the low density of available climate stations. © 2019 The Authors
  • Item
    The mutual dependence of negative emission technologies and energy systems
    (Cambridge : RSC Publ., 2019) Creutzig, Felix; Breyer, Christian; Hilaire, Jérôme; Minx, Jan; Peters, Glen P.; Socolow, Robert
    While a rapid decommissioning of fossil fuel technologies deserves priority, most climate stabilization scenarios suggest that negative emission technologies (NETs) are required to keep global warming well below 2 °C. Yet, current discussions on NETs are lacking a distinct energy perspective. Prominent NETs, such as bioenergy with carbon capture and storage (BECCS) and direct air carbon capture and storage (DACCS), will integrate differently into the future energy system, requiring a concerted research effort to determine adequate means of deployment. In this perspective, we discuss the importance of energy per carbon metrics, factors of future cost development, and the dynamic response of NETs in intermittent energy systems. The energy implications of NETs deployed at scale are massive, and NETs may conceivably impact future energy systems substantially. DACCS outperform BECCS in terms of primary energy required per ton of carbon sequestered. For different assumptions, DACCS displays a sequestration efficiency of 75–100%, whereas BECCS displays a sequestration efficiency of 50–90% or less if indirect land use change is included. Carbon dioxide removal costs of DACCS are considerably higher than BECCS, but if DACCS modularity and granularity helps to foster technological learning to <100$ per tCO2, DACCS may remove CO2 at gigaton scale. DACCS also requires two magnitudes less land than BECCS. Designing NET systems that match intermittent renewable energies will be key for stringent climate change mitigation. Our results contribute to an emerging understanding of NETs that is notably different to that derived from scenario modelling.
  • Item
    Understanding of water resilience in the Anthropocene
    (Amsterdam : Elsevier, 2019) Falkenmark, Malin; Wang-Erlandsson, Lan; Rockström, Johan
    Water is indispensable for Earth resilience and sustainable development. The capacity of social-ecological systems to deal with shocks, adapting to changing conditions and transforming in situations of crisis are fundamentally dependent on the functions of water to e.g., regulate the Earth's climate, support biomass production, and supply water resources for human societies. However, massive, inter-connected, human interference involving climate forcing, water withdrawal, dam constructions, and land-use change have significantly disturbed these water functions and induced regime shifts in social-ecological systems. In many cases, changes in core water functions have pushed systems beyond tipping points and led to fundamental shifts in system feedback. Examples of such transgressions, where water has played a critical role, are collapse of aquatic systems beyond water quality and quantity thresholds, desertification due to soil and ecosystem degradation, and tropical forest dieback associated with self-amplifying moisture and carbon feedbacks. Here, we aggregate the volumes and flows of water involved in water functions globally, and review the evidence of freshwater related linear collapse and non-linear tipping points in ecological and social systems through the lens of resilience theory. Based on the literature review, we synthesize the role of water in mediating different types of ecosystem regime shifts, and generalize the process by which life support systems are at risk of collapsing due to loss of water functions. We conclude that water plays a fundamental role in providing social-ecological resilience, and suggest that further research is needed to understand how the erosion of water resilience at local and regional scale may potentially interact, cascade, or amplify through the complex, globally hyper-connected networks of the Anthropocene. © 2018 The Authors
  • Item
    Corrigendum: Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large (2016 Environ. Res. Lett. 11 054024)
    (Bristol : IOP Publ., 2019) Duethmann, Doris; Menz, Christoph; Jiang, Tong; Vorogushyn, Sergiy
    This is a correction for 2016 Environ. Res. Lett. 11 054024
  • Item
    Inconsistent recognition of uncertainty in studies of climate change impacts on forests
    (Bristol : IOP Publ., 2019) Petr, M.; Vacchiano, G.; Thom, D.; Mairota, P.; Kautz, M.; Goncalves, L.M.S.; Yousefpour, R.; Kaloudis, S.; Reyer, C.P.O.
    Background. Uncertainty about climate change impacts on forests can hinder mitigation and adaptation actions. Scientific enquiry typically involves assessments of uncertainties, yet different uncertainty components emerge in different studies. Consequently, inconsistent understanding of uncertainty among different climate impact studies (from the impact analysis to implementing solutions) can be an additional reason for delaying action. In this review we (a) expanded existing uncertainty assessment frameworks into one harmonised framework for characterizing uncertainty, (b) used this framework to identify and classify uncertainties in climate change impacts studies on forests, and (c) summarised the uncertainty assessment methods applied in those studies. Methods. We systematically reviewed climate change impact studies published between 1994 and 2016. We separated these studies into those generating information about climate change impacts on forests using models –'modelling studies', and those that used this information to design management actions—'decision-making studies'. We classified uncertainty across three dimensions: nature, level, and location, which can be further categorised into specific uncertainty types. Results. We found that different uncertainties prevail in modelling versus decision-making studies. Epistemic uncertainty is the most common nature of uncertainty covered by both types of studies, whereas ambiguity plays a pronounced role only in decision-making studies. Modelling studies equally investigate all levels of uncertainty, whereas decision-making studies mainly address scenario uncertainty and recognised ignorance. Finally, the main location of uncertainty for both modelling and decision-making studies is within the driving forces—representing, e.g. socioeconomic or policy changes. The most frequently used methods to assess uncertainty are expert elicitation, sensitivity and scenario analysis, but a full suite of methods exists that seems currently underutilized. Discussion & Synthesis. The misalignment of uncertainty types addressed by modelling and decision-making studies may complicate adaptation actions early in the implementation pathway. Furthermore, these differences can be a potential barrier for communicating research findings to decision-makers.
  • Item
    Change points of global temperature
    (Bristol : IOP Publ., 2015) Cahill, Niamh; Rahmstorf, Stefan; Parnell, Andrew C.
    We aim to address the question of whether or not there is a significant recent 'hiatus', 'pause' or 'slowdown' of global temperature rise. Using a statistical technique known as change point (CP) analysis we identify the changes in four global temperature records and estimate the rates of temperature rise before and after these changes occur. For each record the results indicate that three CPs are enough to accurately capture the variability in the data with no evidence of any detectable change in the global warming trend since ∼1970. We conclude that the term 'hiatus' or 'pause' cannot be statistically justified.
  • Item
    Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern
    (Bristol : IOP Publ., 2019) Kornhuber, Kai; Osprey, Scott; Coumou, Dim; Petri, Stefan; Petoukhov, Vladimir; Rahmstorf, Stefan; Gray, Lesley
    The summer of 2018 witnessed a number of extreme weather events such as heatwaves in North America, Western Europe and the Caspian Sea region, and rainfall extremes in South-East Europe and Japan that occurred near-simultaneously. Here we show that some of these extremes were connected by an amplified hemisphere-wide wavenumber 7 circulation pattern. We show that this pattern constitutes an important teleconnection in Northern Hemisphere summer associated with prolonged and above-normal temperatures in North America, Western Europe and the Caspian Sea region. This pattern was also observed during the European heatwaves of 2003, 2006 and 2015 among others. We show that the occurrence of this wave 7 pattern has increased over recent decades.
  • Item
    Corrigendum: The role of storage dynamics in annual wheat prices (2017 Environ. Res. Lett. 12 054005)
    (Bristol : IOP Publ., 2018) Schewe, Jacob; Otto, Christian; Frieler, Katja
    [no abstract available]
  • Item
    Targeted policies can compensate most of the increased sustainability risks in 1.5 °C mitigation scenarios
    (Bristol : IOP Publ., 2018) Bertram, Christoph; Luderer, Gunnar; Popp, Alexander; Minx, Jan Christoph; Lamb, William F; Stevanović, Miodrag; Humpenöder, Florian; Giannousakis, Anastasis; Kriegler, Elmar
    Meeting the 1.5 °C goal will require a rapid scale-up of zero-carbon energy supply, fuel switching to electricity, efficiency and demand-reduction in all sectors, and the replenishment of natural carbon sinks. These transformations will have immediate impacts on various of the sustainable development goals. As goals such as affordable and clean energy and zero hunger are more immediate to great parts of global population, these impacts are central for societal acceptability of climate policies. Yet, little is known about how the achievement of other social and environmental sustainability objectives can be directly managed through emission reduction policies. In addition, the integrated assessment literature has so far emphasized a single, global (cost-minimizing) carbon price as the optimal mechanism to achieve emissions reductions. In this paper we introduce a broader suite of policies—including direct sector-level regulation, early mitigation action, and lifestyle changes—into the integrated energy-economy-land-use modeling system REMIND-MAgPIE. We examine their impact on non-climate sustainability issues when mean warming is to be kept well below 2 °C or 1.5 °C. We find that a combination of these policies can alleviate air pollution, water extraction, uranium extraction, food and energy price hikes, and dependence on negative emissions technologies, thus resulting in substantially reduced sustainability risks associated with mitigating climate change. Importantly, we find that these targeted policies can more than compensate for most sustainability risks of increasing climate ambition from 2 °C to 1.5 °C.