Search Results

Now showing 1 - 2 of 2
  • Item
    Sleep apnea-hypopnea quantification by cardiovascular data analysis
    (San Francisco, CA : Public Library of Science (PLoS), 2014) Camargo, S.; Riedl, M.; Anteneodo, C.; Kurths, J.; Penzel, T.; Wessel, N.
    Sleep disorders are a major risk factor for cardiovascular diseases. Sleep apnea is the most common sleep disturbance and its detection relies on a polysomnography, i.e., a combination of several medical examinations performed during a monitored sleep night. In order to detect occurrences of sleep apnea without the need of combined recordings, we focus our efforts on extracting a quantifier related to the events of sleep apnea from a cardiovascular time series, namely systolic blood pressure (SBP). Physiologic time series are generally highly nonstationary and entrap the application of conventional tools that require a stationary condition. In our study, data nonstationarities are uncovered by a segmentation procedure which splits the signal into stationary patches, providing local quantities such as mean and variance of the SBP signal in each stationary patch, as well as its duration L. We analysed the data of 26 apneic diagnosed individuals, divided into hypertensive and normotensive groups, and compared the results with those of a control group. From the segmentation procedure, we identified that the average duration 〈L〉, as well as the average variance 〈σ2〉, are correlated to the apnea-hypoapnea index (AHI), previously obtained by polysomnographic exams. Moreover, our results unveil an oscillatory pattern in apneic subjects, whose amplitude S∗ is also correlated with AHI. All these quantities allow to separate apneic individuals, with an accuracy of at least 79%. Therefore, they provide alternative criteria to detect sleep apnea based on a single time series, the systolic blood pressure.
  • Item
    Insulin adsorption to catheter materials used for intensive insulin therapy in critically ill patients: Polyethylene versus polyurethane - possible cause of variation in glucose control?
    (Sharjah : Bentham Science Publishers B.V., 2014) Ley, S.C.; Ammann, J.; Herder, C.; Dickhaus, T.; Hartmann, M.; Kindgen-Milles, D.
    Introduction: Restoring and maintaining normoglycemia by intensified insulin therapy in critically ill patients is a matter of ongoing debate since the risk of hypoglycemia may outweigh positive effects on morbidity and mortality. In this context, adsorption of insulin to different catheter materials may contribute to instability of glucose control. We studied the adsorption of insulin to different tubing materials in vitro and the effects on glycemic control in vivo. Materials and Methods: In vitro experiments: A syringe pump was filled with 50 IU insulin diluted to 50 ml saline. A flow of 2 ml/h was perfused through polyethylene (PET) or polyurethane (PUR) tubing. Insulin concentrations were measured at the end of the tube for 24 hours using Bradford's protein assay. In vivo study: In a randomized double-blinded cross-over design, 10 intensive care patients received insulin via PET and PUR tubes for 24 hours each, targeting blood glucose levels of 80-150 mg/dl. We measured blood glucose levels, the insulin dose required to maintain target levels, and serum insulin and C-peptide levels. Results: In vitro experiments: After the start of the insulin infusion, only 20% (median, IQR 20-27) (PET) and 22% (IQR 16-27) (PUR) of the prepared insulin concentration were measured at the end of the 2 meter tubing. Using PET, after one hour infusion the concentration increased to 34% (IQR 29-36) and did not increase significantly during the next 24 hours (39% (IQR 39-40)). Using PUR, higher concentrations were detected than for PET at every measurement from 1 hour (82% (IQR 70-86)) to 24 hours (79% (IQR 64-87)). In vivo study: Glycemic control was effective and not different between groups. Significantly higher volumes of insulin solution had to be infused with PET compared to PUR (median PET 70.0 (IQR 56-82) ml vs. PUR 42 (IQR 31-63) ml; p=0.0015). Serum insulin concentrations did not decrease significantly one hour after changing to PET or PUR tubing. Conclusion: Polyurethane tubing systems allow application of insulin with significantly lower adsorption rates than polyethylene tubing systems. As a consequence, less insulin solution has to be infused to patients for effective blood glucose control. Tubing material of the insulin infusion may be crucial for safe and effective glycemic control in critically ill patients.