Search Results

Now showing 1 - 2 of 2
  • Item
    Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania?
    (Heidelberg : Springer, 2017) Lana, Marcos A.; Vasconcelos, Ana Carolina F.; Gornott, Christoph; Schaffert, Angela; Bonatti, Michelle; Volk, Johanna; Graef, Frieder; Kersebaum, Kurt Christian; Sieber, Stefan
    Agriculture has the greatest potential to lift the African continent out of poverty and alleviate hunger. Among the countries in sub-Saharan Africa, Tanzania has an abundance of natural resources and major agricultural potential. However, one of the most important constraints facing Tanzania’s agricultural sector is the dependence on unreliable and irregular weather, including rainfall. A strategy to cope with climate uncertainty in semi-arid regions is to proceed with the sowing of the crop before the onset of the rainy season. The advantage is that when the rains start, seeds are already in the soil and can begin immediately the process of germination. The objective of this paper was to assess the effectiveness of dry-soil planting for maize as an adaptation strategy in the context of a changing climate in Dodoma, a semi-arid region in Tanzania. For this assessment, the DSSAT crop model was used in combination with climate scenarios based on representative concentration pathways. A probability of crop failure of more than 80% can be expected when sowing occurs during the planting window (of 21 days) starting on 1st November. The next planting window we assessed, starting on 23rd November (which was still before the onset of rain), presented significantly lower probabilities of crop failure, indicating that sowing before the onset of the rainy season is a suitable adaptation strategy. Results also indicated that, despite not reaching the highest maize grain yields, fields prepared for dry-soil planting still produced adequate yields. The cultivation of several fields using the dry planting method is a strategy farmers can use to cope with low rainfall conditions, since it increases the chances of harvesting at least some of the cultivated fields. We conclude that dry-soil planting is a feasible and valid technique, even in scenarios of climate change, in order to provide acceptable maize yields in semi-arid Tanzania.
  • Item
    Impacts of 1.5 versus 2.0 °c on cereal yields in the West African Sudan Savanna
    (Bristol : IOP Publishing, 2018) Faye, Babacar; Webber, Heidi; Naab, Jesse B.; MacCarthy, Dilys S.; Adam, Myriam; Ewert, Frank; Lamers, John P.A.; Schleussner, Carl-Friedrich; Ruane, Alex; Gessner, Ursula; Hoogenboom, Gerrit; Boote, Ken; Shelia, Vakhtang; Saeed, Fahad; Wisser, Dominik; Hadir, Sofia; Laux, Patrick; Gaiser, Thomas
    To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.