Search Results

Now showing 1 - 10 of 48
  • Item
    Detection of Protein Glycosylation Using Tip-Enhanced Raman Scattering
    (Columbus, Ohio : American Chemical Society, 2016) Cowcher, David P.; Deckert-Gaudig, Tanja; Brewster, Victoria L.; Ashton, Lorna; Deckert, Volker; Goodacre, Royston
    The correct glycosylation of biopharmaceutical glycoproteins and their formulations is essential for them to have the desired therapeutic effect on the patient. It has recently been shown that Raman spectroscopy can be used to quantify the proportion of glycosylated protein from mixtures of native and glycosylated forms of bovine pancreatic ribonuclease (RNase). Here we show the first steps toward not only the detection of glycosylation status but the characterization of glycans themselves from just a few protein molecules at a time using tip-enhanced Raman scattering (TERS). While this technique generates complex data that are very dependent on the protein orientation, with the careful development of combined data preprocessing, univariate and multivariate analysis techniques, we have shown that we can distinguish between the native and glycosylated forms of RNase. Many glycoproteins contain populations of subtly different glycoforms; therefore, with stricter orientation control, we believe this has the potential to lead to further glycan characterization using TERS, which would have use in biopharmaceutical synthesis and formulation research.
  • Item
    Quantification of osseointegration of plasma-polymer coated titanium alloyed implants by means of microcomputed tomography versus histomorphometry
    (New York [u.a.] : Hindawi, 2015) Gabler, Carolin; Zietz, Carmen; Bieck, Richard; Göhler, Rebecca; Lindner, Tobias; Haenle, Maximilian; Finke, Birgit; Meichsner, Jürgen; Testrich, Holger; Nowottnick, Mathias; Frerich, Bernhard; Bader, Rainer
    A common method to derive both qualitative and quantitative data to evaluate osseointegration of implants is histomorphometry. The present study describes a new image reconstruction algorithm comparing the results of bone-to-implant contact (BIC) evaluated by means of µCT with histomorphometry data. Custom-made conical titanium alloyed (Ti6Al4V) implants were inserted in the distal tibial bone of female Sprague-Dawley rats. Different surface configurations were examined: Ti6Al4V implants with plasma-polymerized allylamine (PPAAm) coating and plasma-polymerized ethylenediamine (PPEDA) coating as well as implants without surface coating. After six weeks postoperatively, tibiae were explanted and BIC was determined by µCT (3D) and afterwards by histomorphometry (2D). In comparison to uncoated Ti6Al4V implants demonstrating low BIC of 32.4% (histomorphometry) and 51.3% (µCT), PPAAm and PPEDA coated implants showed a nonsignificant increase in BIC (histomorphometry: 45.7% and 53.5% and µCT: 51.8% and 62.0%, resp.). Mean BIC calculated by µCT was higher for all surface configurations compared to BIC detected by histomorphometry. Overall, a high correlation coefficient of 0.70 () was found between 3D and 2D quantification of BIC. The μCT analysis seems to be suitable as a nondestructive and accurate 3D imaging method for the evaluation of the bone-implant interface.
  • Item
    Orchestrated control of filaggrin-actin scaffolds underpins cornification
    (London [u.a.] : Nature Publishing Group, 2018) Gutowska-Owsiak, Danuta; de La Serna, Jorge Bernardino; Fritzsche, Marco; Naeem, Aishath; Podobas, Ewa I.; Leeming, Michael; Colin-York, Huw; O’Shaughnessy, Ryan; Eggeling, Christian; Ogg, Graham S.
    Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification, leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover, while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the cytoplasmic actin cytoskeleton, including the role for α- and β-actin scaffolds. Filaggrin-containing KHGs displayed high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1), facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting epidermal stratification and formation of a fully functional skin barrier.
  • Item
    Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications
    (London : Soc., 2014) Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Janaszewska, Anna; Lazniewska, Joanna; Voit, Brigitte
    In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promise.
  • Item
    Performing DNA nanotechnology operations on a zebrafish
    (Cambridge : RSC, 2018) Yang, Jian; Meng, Zhuojun; Liu, Qing; Shimada, Yasuhito; Olsthoorn, René C. L.; Spaink, Herman P.; Herrmann, Andreas; Kros, Alexander
    Nanoscale engineering of surfaces is becoming an indispensable technique to modify membranes and, thus cellular behaviour. Here, such membrane engineering related was explored on the surface of a living animal using DNA nanotechnology. We demonstrate the immobilization of oligonucleotides functionalized with a membrane anchor on 2 day old zebrafish. The protruding single-stranded DNA on the skin of zebrafish served as a handle for complementary DNAs, which allowed the attachment of small molecule cargo, liposomes and dynamic relabeling by DNA hybridization protocols. Robust anchoring of the oligonucleotides was proven as DNA-based amplification processes were successfully performed on the outer membrane of the zebrafish enabling the multiplication of surface functionalities from a single DNA-anchoring unit and the dramatic improvement of fluorescent labeling of these animals. As zebrafish are becoming an alternative to animal models in drug development, toxicology and nanoparticles characterization, we believe the platform presented here allows amalgamation of DNA nanotechnology tools with live animals and this opens up yet unexplored avenues like efficient bio-barcoding as well as in vivo tracking. © The Royal Society of Chemistry.
  • Item
    Bioactive secondary metabolites with multiple activities from a fungal endophyte
    (Oxford : Wiley-Blackwell, 2016) Bogner, Catherine W.; Kamdem, Ramsay S.T.; Sichtermann, Gisela; Matthäus, Christian; Hölscher, Dirk; Popp, Jürgen; Proksch, Peter; Grundler, Florian M.W.; Schouten, Alexander
    In order to replace particularly biohazardous nematocides, there is a strong drive to finding natural product-based alternatives with the aim of containing nematode pests in agriculture. The metabolites produced by the fungal endophyte Fusarium oxysporum 162 when cultivated on rice media were isolated and their structures elucidated. Eleven compounds were obtained, of which six were isolated from a Fusarium spp. for the first time. The three most potent nematode-antagonistic compounds, 4-hydroxybenzoic acid, indole-3-acetic acid (IAA) and gibepyrone D had LC50 values of 104, 117 and 134 Î¼g ml−1, respectively, after 72 h. IAA is a well-known phytohormone that plays a role in triggering plant resistance, thus suggesting a dual activity, either directly, by killing or compromising nematodes, or indirectly, by inducing defence mechanisms against pathogens (nematodes) in plants. Such compounds may serve as important leads in the development of novel, environmental friendly, nematocides.
  • Item
    Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba
    (San Diego, Calif. : Elsevier, 2010) Pabisch, S.; Puchegger, S.; Kirchner, H.O.K.; Weiss, I.M.; Peterlik, H.
    The keratin structure in the cortex of peacocks' feathers is studied by X-ray diffraction along the feather, from the calamus to the tip. It changes considerably over the first 5. cm close to the calamus and remains constant for about 1. m along the length of the feather. Close to the tip, the structure loses its high degree of order. We attribute the X-ray patterns to a shrinkage of a cylindrical arrangement of β-sheets, which is not fully formed initially. In the final structure, the crystalline beta-cores are fixed by the rest of the keratin molecule. The hydrophobic residues of the beta-core are locked into a zip-like arrangement. Structurally there is no difference between the blue and the white bird. © 2010 Elsevier Inc.
  • Item
    Cell stimulation versus cell death induced by sequential treatments with pulsed electric fields and cold atmospheric pressure plasma
    (San Francisco, California, US : PLOS, 2018) Steuer, Anna; Wolff, Christina M.; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Kolb, Juergen F.
    Pulsed electric fields (PEFs) and cold atmospheric pressure plasma (CAP) are currently both investigated for medical applications. The exposure of cells to PEFs can induce the formation of pores in cell membranes and consequently facilitate the uptake of molecules. In contrast, CAP mainly acts through reactive species that are generated in the liquid environment. The objective of this study was to determine, if PEFs combined with plasma-treated cell culture medium can mutually reinforce effects on viability of mammalian cells. Experiments were conducted with rat liver epithelial WB-F344 cells and their tumorigenic counterpart WB-ras for a direct comparison of non-tumorigenic and tumorigenic cells from the same origin. Viability after treatments strongly depended on cell type and applied field strength. Notably, tumorigenic WB-ras cells responded more sensitive to the respective treatments than non-tumorigenic WB-F344 cells. More cells were killed when plasma-treated medium was applied first in combination with treatments with 100-μs PEFs. For the reversed treatment order, i.e. application of PEFs first, the combination with 100-ns PEFs resulted in a stimulating effect for non-tumorigenic but not for tumorigenic cells. The results suggest that other mechanisms, besides simple pore formation, contributed to the mutually reinforcing effects of the two methods.
  • Item
    Improving Accuracy and Temporal Resolution of Learning Curve Estimation for within- and across-Session Analysis
    (San Francisco, California, US : PLOS, 2016) Deliano, Matthias; Tabelow, Karsten; König, Reinhard; Polzehl, Jörg
    Estimation of learning curves is ubiquitously based on proportions of correct responses within moving trial windows. Thereby, it is tacitly assumed that learning performance is constant within the moving windows, which, however, is often not the case. In the present study we demonstrate that violations of this assumption lead to systematic errors in the analysis of learning curves, and we explored the dependency of these errors on window size, different statistical models, and learning phase. To reduce these errors in the analysis of single-subject data as well as on the population level, we propose adequate statistical methods for the estimation of learning curves and the construction of confidence intervals, trial by trial. Applied to data from an avoidance learning experiment with rodents, these methods revealed performance changes occurring at multiple time scales within and across training sessions which were otherwise obscured in the conventional analysis. Our work shows that the proper assessment of the behavioral dynamics of learning at high temporal resolution can shed new light on specific learning processes, and, thus, allows to refine existing learning concepts. It further disambiguates the interpretation of neurophysiological signal changes recorded during training in relation to learning.
  • Item
    Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)
    (San Francisco, California, US : PLOS, 2016) Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis; Nabi, Ivan R
    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.