Search Results

Now showing 1 - 10 of 11
  • Item
    Melt mixed composites of polypropylene with singlewalled carbon nanotubes for thermoelectric applications: Switching from p- to n-type behavior by additive addition
    (Melville, NY : AIP, 2019) Pötschke; Petra; Krause, Beate; Luo, Jinji
    Composites were prepared with polypropylene (PP) as the matrix and singlewalled CNTs (SWCNTs) of the type TUBALL from OCSiAl Ltd. as the conducting component by melt processing in a small-scale twin-screw compounder. In order to switch the typical p-type behavior of such composites from positive Seebeck coefficients (S) into n-type behavior with negative Seebeck coefficients, a non-ionic surfactant polyoxyethylene 20 cetyl ether (Brij58) was used and compared with a PEG additive, which was shown previously to be able to induce such switching. For PP-2 wt% SWCNT composites Brij58 is shown to result in n-type composites. The negative S values (up to −48.2 µV/K) are not as high as in the case of previous results using PEG (−56.6 µV/K). However, due to the more pronounced effect of Brij58 on the electrical conductivity, the achieved power factors are higher and reach a maximum of 0.144 µW/(m·K2) compared to previous 0.078 µW/(m·K2) with PEG. Dispersion improvement depends on the type of SWCNTs obtained by using varied synthesis/treatment conditions. Solution prepared composites of PEG with SWCNTs also have negative S values, indicating the donation of electrons from PEG to the SWCNTs. However, such composites are brittle and not suitable as thermoelectric materials.
  • Item
    Polymer - Carbon nanotube composites for thermoelectric applications
    (Melville, NY : AIP, 2017) Luo, J.; Krause, Beate; Pötschke, Petra
    The thermoelectric (TE) performance of electrically conductive thermoplastic composites prepared by melt mixing was investigated. A cost effective widely used in industry polymer, namely polypropylene (PP), was chosen as the matrix to fabricate the composites. Singlewalled carbon nanotubes (SWCNTs), the amount (2 wt%) of which was selected to be above the electrical percolation threshold (< 0.2 wt%), were used to form an electrical conducting network. Besides as-produced SWCNTs plasma modified tubes were employed to study the influence of the functionalization on the morphology, dispersion and TE properties of the PP composites. In addition, melt processing conditions, e.g. temperature, rotation speed, and time during mixing in a small-scale compounder were varied. Furthermore, an ionic liquid (IL, 1-methyl-3-octylimidazolium tetrafluoroborate) was used as a processing additive during melt mixing, which was confirmed to improve the electrical conductivity of the composites. Simultaneous increase in the Seebeck coefficient up to a value of 64 μV/K was recorded, leading to a much better power factor of 0.26 μW/(m·K2) compared to composites without IL. This melt mixing strategy opens new avenues for solvent-free, large scale fabrication of polymer based TE materials.
  • Item
    Development of a polymer composite with high electrical conductivity and improved impact strength for the application as bipolar plate
    (Melville, NY : AIP, 2016) Hopmann, C.; Windeck, C.; Cohnen, A.; Onken, J.; Krause, Beate; Pötschke, Petra; Hickmann, T.
    Bipolar plates constitute the most important structural component in fuel cell stacks. Highly filled thermoplastic composites with high electrical conductivity obtain an increasing importance in the design of bipolar plates as alternative to conventional metallic systems. Thermoplastics (e.g. PP) have suitable properties such as a good processability, chemical resistance, light weight and low production costs. As thermoplastics have low electrical conductivities, conductive fillers have to be included in the matrix. A high content of such fillers (e.g. graphite) in excess of 80 wt.-% is necessary to achieve the desired electrical properties. However, materials with such high filler contents embrittle readily. The workability in injection and compression molding is difficult and the mechanical stability is insufficient in case of strain deformation. As consequence, material failure and an inacceptable amount of damaged goods can be observed during the processing. As no suitable thermoplastic system is available for better mechanical properties, the induction and dispersion of a rubber phase in the thermoplastic matrix can be used to increase the impact strength of the conductive composite. In this research work a ternary composite, based on PP as matrix, EPDM as impact modifier and synthetic graphite as conductive filler, was developed. The material was produced using a 26 mm co-rotating, intermeshing twin-screw extruder. The amounts of PP, EPDM and graphite were varied systematically and a process window was defined that enables improved impact strength and high electrical conductivity of the new material. The results indicate that impact strength can be enhanced by about 99 % with an EPDM content of 30 wt.-% in the PP matrix. The electrical conductivity decreases in a small range with increasing content of EPDM, but the conductivity is still excellent for producing bipolar plates.
  • Item
    Liquid sensing: Smart polymer/CNT composites
    (Amsterdam [u.a.] : Elsevier, 2011) Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P.
    Today polymer/carbon nanotube (CNT) composites can be found in sports equipment, cars, and electronic devices. The growth of old and new markets in this area has been stimulated by our increased understanding of relevant production and processing methods, as well as the considerable price reduction of industrial CNT grades. In particular, CNT based electrically conductive polymer composites (CPCs) offer a range of opportunities because of their unique property profile; they demonstrate low specific gravity in combination with relatively good mechanical properties and processability. The electrical conductivity of polymer/CNT composites results from a continuous filler network that can be affected by various external stimuli, such as temperature shifts, mechanical deformations, and the presence of gases and vapors or solvents. Accordingly, CNT based CPCs represent promising candidates for the design of smart components capable of integrated monitoring. In this article we focus on their use as leakage detectors for organic solvents.
  • Item
    Nanofiller dispersion, morphology, mechanical behavior, and electrical properties of nanostructured styrene-butadiene-based triblock copolymer/CNT composites
    (Basel : MDPI, 2019) Staudinger, Ulrike; Satapathy, Bhabani K.; Jehnichen, Dieter
    A nanostructured linear triblock copolymer based on styrene and butadiene with lamellar morphology is filled with multiwalled carbon nanotubes (MWCNTs) of up to 1 wt% by melt compounding. This study deals with the dispersability of the MWCNTs within the nanostructured matrix and its consequent impact on block copolymer (BCP) morphology, deformation behavior, and the electrical conductivity of composites. By adjusting the processing parameters during melt mixing, the dispersion of the MWCNTs within the BCP matrix are optimized. In this study, the morphology and glass transition temperatures (Tg) of the hard and soft phase are not significantly influenced by the incorporation of MWCNTs. However, processing-induced orientation effects of the BCP structure are reduced by the addition of MWCNT accompanied by a decrease in lamella size. The stress-strain behavior of the triblock copolymer/MWCNT composites indicate higher Young’s modulus and pronounced yield point while retaining high ductility (strain at break ~ 400%). At a MWCNT content of 1 wt%, the nanocomposites are electrically conductive, exhibiting a volume resistivity below 3 × 103 Ω·cm. Accordingly, the study offers approaches for the development of mechanically flexible functional materials while maintaining a remarkable structural property profile.
  • Item
    Establishment, morphology and properties of carbon nanotube networks in polymer melts
    (Amsterdam [u.a.] : Elsevier, 2012) Alig, I.; Pötschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G.R.; Villmow, T.
    As for nanofillers in general, the properties of carbon nanotube (CNT) -polymer composites depend strongly on the filler arrangement and the structure of the filler network. This article reviews our actual understanding of the relation between processing conditions, state of CNT dispersion and structure of the filler network on the one hand, and the resulting electrical, melt rheological and mechanical properties, on the other hand. The as-produced rather compact agglomerates of CNTs (initial agglomerates, >1 μm), whose structure can vary for different tube manufacturers, synthesis and/or purification conditions, have first to be well dispersed in the polymer matrix during the mixing step, before they can be arranged to a filler network with defined physical properties by forming secondary agglomerates. Influencing factors on the melt dispersion of initial agglomerates of multi-walled CNTs into individualized tubes are discussed in context of dispersion mechanisms, namely the melt infiltration into initial agglomerates, agglomerate rupture and nanotube erosion from agglomerate surfaces. The hierarchical morphology of filler arrangement resulting from secondary agglomeration processes has been found to be due to a competition of build-up and destruction for the actual melt temperature and the given external flow field forces. Related experimental results from in-line and laboratory experiments and a model approach for description of shear-induced properties are presented.
  • Item
    Polyethylene glycol-modified poly(styrene-co-ethylene/butylene-co-styrene)/carbon nanotubes composite for humidity sensing
    (Lausanne : Frontiers Media, 2019) Mičušík, Matej; Chatzimanolis, Christos; Tabačiarová, Jana; Kollár, Jozef; Kyritsis, Apostolos; Pissis, Polycarpos; Pionteck, Jürgen; Vegso, Karol; Siffalovic, Peter; Majkova, Eva; Omastová, Mária
    Polymeric composites of the linear triblock copolymer poly(styrene-co-ethylene/butylene-co-styrene) grafted with maleic anhydride units (SEBS-MA) or MA modified by hydrophilic polyethylene glycol (PEG) and containing various amounts of multiwall carbon nanotubes (MWCNTs) as conducting filler—were prepared by solvent casting. The MWCNT surface was modified by a non-covalent approach with a pyrene-based surfactant to achieve a homogeneous dispersion of the conducting filler within the polymeric matrix. The dispersion of the unmodified and surfactant-modified MWCNTs within the elastomeric SEBS-MA and SEBS-MA-PEG matrices was characterized by studying the morphology by TEM and SAXS. Dynamical mechanical analysis was used to evaluate the interaction between the MWCNTs and copolymer matrix. The electrical conductivity of the prepared composites was measured by dielectric relaxation spectroscopy, and the percolation threshold was calculated. The prepared elastomeric composites were characterized and studied as humidity sensor. Our results demonstrated that at MWCNTs concentration slightly above the percolation threshold could result in large signal changes. In our system, good results were obtained for MWCNT loading of 2 wt% and an ~0.1 mm thin composite film. The thickness of the tested elastomeric composites and the source current appear to be very important factors that influence the sensing performance. © 2019 Mičušík, Chatzimanolis, Tabačiarová, Kollár, Kyritsis, Pissis, Pionteck, Vegso, Siffalovic, Majkova and Omastová.
  • Item
    Electrical and thermal conductivity of polypropylene filled with combinations of carbon fillers
    (Melville, NY : AIP, 2016) Krause, Beate; Pötschke, Petra
    The thermal and electrical conductivity of polymer composites filled with a low content up to 7.5 vol% of different carbon fillers (carbon nanotubes, carbon fibers, graphite nanoplates) were investigated. It was found that the combination of two or three carbon fillers leads to an increase of thermal conductivity up to 193% which is higher than the sum of the effects of both fillers.
  • Item
    Elucidating the chemistry behind the reduction of graphene oxide using a green approach with polydopamine
    (Basel : MDPI, 2019) Silva, Cláudia; Simon, Frank; Friedel, Peter; Pötschke, Petra; Zimmerer, Cordelia
    A new approach using X-ray photoelectron spectroscopy (XPS) was employed to give insight into the reduction of graphene oxide (GO) using a green approach with polydopamine (PDA). In this approach, the number of carbon atoms bonded to OH and to nitrogen in PDA is considered and compared to the total intensity of the signal resulting from OH groups in polydopamine-reduced graphene oxide (PDA-GO) to show the reduction. For this purpose, GO and PDA-GO with different times of reduction were prepared and characterized by Raman Spectroscopy and XPS. The PDA layer was removed to prepare reduced graphene oxide (RGO) and the effect of all chemical treatments on the thermal and electrical properties of the materials was studied. The results show that the complete reduction of the OH groups in GO occurred after 180 min of reaction. It was also concluded that Raman spectroscopy is not well suited to determine if the reduction and restoration of the sp2 structure occurred. Moreover, a significant change in the thermal stability was not observed with the chemical treatments. Finally, the electrical powder conductivity decreased after reduction with PDA, increasing again after its removal. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications
    (Basel : MDPI, 2019) Rzeczkowski, Piotr; Krause, Beate; Pötschke, Petra
    In order to evaluate the suitability of graphite composite materials for use as bipolar plates in fuel cells, polypropylene (PP) was melt compounded with expanded graphite as conductive filler to form composites with different filler contents of 10–80 wt %. Electrical resistivity, thermal conductivity, and mechanical properties were measured and evaluated as a function of filler content. The electrical and thermal conductivities increased with filler content. Tensile and flexural strengths decreased with the incorporation of expanded graphite in PP. With higher graphite contents, however, both strength values remained more or less unchanged and were below the values of pure PP. Young’s-modulus and flexural modulus increased almost linearly with increasing filler content. The results of the thermogravimetric analysis confirmed the actual filler content in the composite materials. In order to evaluate the wettability and suitability for adhesive joining of graphite composites, contact angle measurements were conducted and surface tensions of composite surfaces were calculated. The results showed a significant increase in the surface tension of graphite composites with increasing filler content. Furthermore, graphite composites were adhesively joined and the strength of the joints was evaluated in the lap-shear test. Increasing filler content in the substrate material resulted in higher tensile lap-shear strength. Additionally, the influence of surface treatment (plasma and chemical) on surface tension and tensile lap-shear strength was investigated. The surface treatment led to a significant improvement of both properties.