Search Results

Now showing 1 - 10 of 21
  • Item
    Effects of new beta-type Ti-40Nb implant materials, brain-derived neurotrophic factor, acetylcholine and nicotine on human mesenchymal stem cells of osteoporotic and non osteoporotic donors
    (San Francisco, CA : Public Library of Science (PLoS), 2018) Kauschke, V.; Gebert, A.; Calin, M.; Eckert, J.; Scheich, S.; Heiss, C.; Lips, K.S.
    Introduction Treatment of osteoporotic fractures is still challenging and an urgent need exists for new materials, better adapted to osteoporotic bone by adjusted Young’s modulus, appropriate surface modification and pharmaceuticals. Materials and methods Titanium-40-niobium alloys, mechanically ground or additionally etched and titanium-6-alu-minium-4-vanadium were analyzed in combination with brain-derived neurotrophic factor, acetylcholine and nicotine to determine their effects on human mesenchymal stem cells in vitro over 21 days using lactate dehydrogenase and alkaline phosphatase assays, live cell imaging and immunofluorescence microscopy. Results Cell number of human mesenchymal stem cells of osteoporotic donors was increased after 14 d in presence of ground titanium-40-niobium or titanium-6-aluminium-4-vanadium, together with brain-derived neurotrophic factor. Cell number of human mesenchymal stem cells of non osteoporotic donors increased after 21 d in presence of titanium-6-aluminium-4-vanadium without pharmaceuticals. No significant increase was measured for ground or etched titanium-40-niobium after 21 d. Osteoblast differentiation of osteoporotic donors was significantly higher than in non osteoporotic donors after 21 d in presence of etched, ground titanium-40-niobium or titanium-6-aluminium-4-vanadium accompanied by all pharmaceuticals tested. In presence of all alloys tested brain-derived neurotrophic factor, acetylcholine and nicotine increased differentiation of cells of osteoporotic donors and accelerated it in non osteoporotic donors. Conclusion We conclude that ground titanium-40-niobium and brain-derived neurotrophic factor might be most suitable for subsequent in vivo testing.
  • Item
    Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)
    (San Francisco, California, US : PLOS, 2016) Thamm, Kristina; Graupner, Sylvi; Werner, Carsten; Huttner, Wieland B.; Corbeil, Denis; Nabi, Ivan R
    The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.
  • Item
    Effect on healthcare utilization and costs of spinal manual therapy for acute low back pain in routine care: A propensity score matched cohort study
    (San Francisco, California, US : PLOS, 2017) Walker, Jochen; Mertens, Ulf Kai; Schmidt, Carsten Oliver; Chenot, Jean-François
    Spinal manual therapy (SMT) is a popular treatment option for low back pain (LBP). The aim of our analysis was to evaluate the effects of manual therapy delivered by general practitioners and ambulatory orthopedic surgeons in routine care on follow up consultations, sick leave, health service utilization and costs for acute LBP compared to matched patients not receiving manual therapy. This is a propensity score matched cohort study based on health claims data. We identified a total of 113.652 adult patients with acute LBP and no coded red flags of whom 21.021 (18%) received SMT by physicians. In the final analysis 17.965 patients in each group could be matched. Balance on patients' coded characteristics, comorbidity and prior health service utilization was achieved. The provision of SMT for acute LBP had no relevant impact on follow up visits and days of sick leave for LBP in the index billing period and the following year. SMT was associated with a higher proportion of imaging studies for LBP (30.6% vs. 23%, SMD: 0.164 [95% CI 0.143-0.185]). SMT did not lead to meaningful savings by replacing other health services for LBP. SMT for acute non-specific LBP in routine care was not clinically meaningful effective to reduce sick leave and reconsultation rates compared to no SMT and did not lead to meaningful savings by replacing other health services from the perspective of health insurance. This does not imply that SMT is ineffective but might reflect a problem with selection of suitable patients and the quality and quantity of SMT in routine care. National Manual Medicine societies should state clearly that imaging is not routinely needed prior to SMT in patients with low suspicion of presence of red flags and monitor the quality of provided services.
  • Item
    Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis
    (San Francisco, CA : Public Library of Science, 2012) Recknagel, P.; Gonnert, F.A.; Westermann, M.; Lambeck, S.; Lupp, A.; Rudiger, A.; Dyson, A.; Carré, J.E.; Kortgen, A.; Krafft, C.; Popp, J.; Sponholz, C.; Fuhrmann, V.; Hilger, I.; Claus, R.A.; Riedemann, N.C.; Wetzker, R.; Singer, M.; Trauner, M.; Bauer, M.
    Background: Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings: In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions: Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary.
  • Item
    Vinculin binding angle in podosomes revealed by high resolution microscopy
    (San Francisco, CA : Public Library of Science, 2014) Walde, M.; Monypenny, J.; Heintzmann, R.; Jones, G.E.; Cox, S.
    Podosomes are highly dynamic actin-rich adhesive structures formed predominantly by cells of the monocytic lineage, which degrade the extracellular matrix. They consist of a core of F-actin and actin-regulating proteins, surrounded by a ring of adhesion-associated proteins such as vinculin. We have characterised the structure of podosomes in macrophages, particularly the structure of the ring, using three super-resolution fluorescence microscopy techniques: stimulated emission depletion microscopy, structured illumination microscopy and localisation microscopy. Rather than being round, as previously assumed, we found the vinculin ring to be created from relatively straight strands of vinculin, resulting in a distinctly polygonal shape. The strands bind preferentially at angles between 116° and 135°. Furthermore, adjacent vinculin strands are observed nucleating at the corners of the podosomes, suggesting a mechanism for podosome growth.
  • Item
    Removing biofilms from microstructured titanium Ex Vivo: A novel approach using atmospheric plasma technology
    (San Francisco, CA : Public Library of Science, 2011) Rupf, S.; Idlibi, A.N.; Marrawi, F.A.; Hannig, M.; Schubert, A.; von Mueller, L.; Spitzer, W.; Holtmann, H.; Lehmann, A.; Rueppell, A.; Schindler, A.
    The removal of biofilms from microstructured titanium used for dental implants is a still unresolved challenge. This experimental study investigated disinfection and removal of in situ formed biofilms from microstructured titanium using cold atmospheric plasma in combination with air/water spray. Titanium discs (roughness (Ra): 1.96 μm) were exposed to human oral cavities for 24 and 72 hours (n = 149 each) to produce biofilms. Biofilm thickness was determined using confocal laser scanning microscopy (n = 5 each). Plasma treatment of biofilms was carried out ex vivo using a microwave-driven pulsed plasma source working at temperatures from 39 to 43°C. Following plasma treatment, one group was air/water spray treated before re-treatment by second plasma pulses. Vital microorganisms on the titanium surfaces were identified by contact culture (Rodac agar plates). Biofilm presence and bacterial viability were quantified by fluorescence microscopy. Morphology of titanium surfaces and attached biofilms was visualized by scanning electron microscopy (SEM). Total protein amounts of biofilms were colorimetrically quantified. Untreated and air/water treated biofilms served as controls. Cold plasma treatment of native biofilms with a mean thickness of 19 μm (24 h) to 91 μm (72 h) covering the microstructure of the titanium surface caused inactivation of biofilm bacteria and significant reduction of protein amounts. Total removal of biofilms, however, required additional application of air/water spray, and a second series of plasma treatment. Importantly, the microstructure of the titanium discs was not altered by plasma treatment. The combination of atmospheric plasma and non-abrasive air/water spray is applicable for complete elimination of oral biofilms from microstructured titanium used for dental implants and may enable new routes for the therapy of periimplant disease.
  • Item
    Geometry-Driven Cell Organization Determines Tissue Growths in Scaffold Pores: Consequences for Fibronectin Organization
    (San Francisco, CA : Public Library of Science, 2013) Joly, P.; Duda, G.N.; Schöne, M.; Welzel, P.B.; Freudenberg, U.; Werner, C.; Petersen, A.
    To heal tissue defects, cells have to bridge gaps and generate new extracellular matrix (ECM). Macroporous scaffolds are frequently used to support the process of defect filling and thus foster tissue regeneration. Such biomaterials contain micro-voids (pores) that the cells fill with their own ECM over time. There is only limited knowledge on how pore geometry influences cell organization and matrix production, even though it is highly relevant for scaffold design. This study hypothesized that 1) a simple geometric description predicts cellular organization during pore filling at the cell level and that 2) pore closure results in a reorganization of ECM. Scaffolds with a broad distribution of pore sizes (macroporous starPEG-heparin cryogel) were used as a model system and seeded with primary fibroblasts. The strategies of cells to fill pores could be explained by a simple geometrical model considering cells as tensioned chords. The model matched qualitatively as well as quantitatively by means of cell number vs. open cross-sectional area for all pore sizes. The correlation between ECM location and cell position was higher when the pores were not filled with tissue (Pearson's coefficient ρ = 0.45±0.01) and reduced once the pores were closed (ρ = 0.26±0.04) indicating a reorganization of the cell/ECM network. Scaffold pore size directed the time required for pore closure and furthermore impacted the organization of the fibronectin matrix. Understanding how cells fill micro-voids will help to design biomaterial scaffolds that support the endogenous healing process and thus allow a fast filling of tissue defects.
  • Item
    Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms
    (San Francisco, CA : Public Library of Science, 2013) Matthes, R.; Bender, C.; Schlüter, R.; Koban, I.; Bussiahn, R.; Reuter, S.; Lademann, J.; Weltmann, K.-D.; Kramer, A.
    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds.
  • Item
    Out of the lab and into the bathroom: Evening short-term exposure to conventional light suppresses melatonin and increases alertness perception
    (Basel : MDPI AG, 2013) Wahnschaffe, A.; Haedel, S.; Rodenbeck, A.; Stoll, C.; Rudolph, H.; Kozakov, R.; Schoepp, H.; Kunz, D.
    Life in 24-h society relies on the use of artificial light at night that might disrupt synchronization of the endogenous circadian timing system to the solar day. This could have a negative impact on sleep-wake patterns and psychiatric symptoms. The aim of the study was to investigate the influence of evening light emitted by domestic and work place lamps in a naturalistic setting on melatonin levels and alertness in humans. Healthy subjects (6 male, 3 female, 22-33 years) were exposed to constant dim light (<10 lx) for six evenings from 7:00 p.m. to midnight. On evenings 2 through 6, 1 h before habitual bedtime, they were also exposed to light emitted by 5 different conventional lamps for 30 min. Exposure to yellow light did not alter the increase of melatonin in saliva compared to dim light baseline during (38 ± 27 pg/mL vs. 39 ± 23 pg/mL) and after light exposure (39 ± 22 pg/mL vs. 44 ± 26 pg/mL). In contrast, lighting conditions including blue components reduced melatonin increase significantly both during (office daylight white: 25 ± 16 pg/mL, bathroom daylight white: 24 ± 10 pg/mL, Planon warm white: 26 ± 14 pg/mL, hall daylight white: 22 ± 14 pg/mL) and after light exposure (office daylight white: 25 ± 15 pg/mL, bathroom daylight white: 23 ± 9 pg/mL, Planon warm white: 24 ± 13 pg/mL, hall daylight white: 22 ± 26 pg/mL). Subjective alertness was significantly increased after exposure to three of the lighting conditions which included blue spectral components in their spectra. Evening exposure to conventional lamps in an everyday setting influences melatonin excretion and alertness perception within 30 min.
  • Item
    In vitro model of metastasis to bone marrow mediates prostate cancer castration resistant growth through paracrine and extracellular matrix factors
    (San Francisco, CA : Public Library of Science, 2012) Lescarbeau, R.M.; Seib, F.P.; Prewitz, M.; Werner, C.; Kaplan, D.L.
    The spread of prostate cancer cells to the bone marrow microenvironment and castration resistant growth are key steps in disease progression and significant sources of morbidity. However, the biological significance of mesenchymal stem cells (MSCs) and bone marrow derived extracellular matrix (BM-ECM) in this process is not fully understood. We therefore established an in vitro engineered bone marrow tissue model that incorporates hMSCs and BM-ECM to facilitate mechanistic studies of prostate cancer cell survival in androgen-depleted media in response to paracrine factors and BM-ECM. hMSC-derived paracrine factors increased LNCaP cell survival, which was in part attributed to IGFR and IL6 signaling. In addition, BM-ECM increased LNCaP and MDA-PCa-2b cell survival in androgen-depleted conditions, and induced chemoresistance and morphological changes in LNCaPs. To determine the effect of BM-ECM on cell signaling, the phosphorylation status of 46 kinases was examined. Increases in the phosphorylation of MAPK pathway-related proteins as well as sustained Akt phosphorylation were observed in BM-ECM cultures when compared to cultures grown on plasma-treated polystyrene. Blocking MEK1/2 or the PI3K pathway led to a significant reduction in LNCaP survival when cultured on BM-ECM in androgen-depleted conditions. The clinical relevance of these observations was determined by analyzing Erk phosphorylation in human bone metastatic prostate cancer versus non-metastatic prostate cancer, and increased phosphorylation was seen in the metastatic samples. Here we describe an engineered bone marrow model that mimics many features observed in patients and provides a platform for mechanistic in vitro studies.