Search Results

Now showing 1 - 10 of 84
Loading...
Thumbnail Image
Item

When optimization for governing human-environment tipping elements is neither sustainable nor safe

2018, Barfuss, W., Donges, J.F., Lade, S.J., Kurths, J.

Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.

Loading...
Thumbnail Image
Item

Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies

2014, Xi, W., Schmidt, C.K., Sanchez, S., Gracias, D.H., Carazo-Salas, R.E., Jackson, S.P., Schmidt, O.G.

We use micropatterning and strain engineering to encapsulate single living mammalian cells into transparent tubular architectures consisting of three-dimensional (3D) rolled-up nanomembranes. By using optical microscopy, we demonstrate that these structures are suitable for the scrutiny of cellular dynamics within confined 3D-microenvironments. We show that spatial confinement of mitotic mammalian cells inside tubular architectures can perturb metaphase plate formation, delay mitotic progression, and cause chromosomal instability in both a transformed and nontransformed human cell line. These findings could provide important clues into how spatial constraints dictate cellular behavior and function.

Loading...
Thumbnail Image
Item

Shared MRSA Strains among Nepalese Rhesus macaques (Macaca mulatta), their Environment and Hospitalized Patients

2019, Roberts, Marilyn C., Joshi, Prabhu Raj, Monecke, Stefan, Ehricht, Ralf, Müller, Elke, Gawlik, Darius, Paudel, Saroj, Acharya, Mahesh, Bhattarai, Sankalpa, Pokharel, Sujana, Tuladhar, Reshma, Chalise, Mukesh K., Kyes, Randall C.

This study looked at 227 saliva samples from Rhesus macaques (Macaca mulatta) and 218 samples from the surrounding environments. From these samples, MRSA isolates were collected from Rhesus saliva samples (n = 13) and environmental samples (n = 19) near temple areas in Kathmandu, Nepal. For comparison, selected MRSA isolates (n = 5) were obtained from patients with wound infections from a Kathmandu hospital. All isolates were characterized using Abbott StaphyType® DNA microarrays. Eighteen isolates (62%) from monkeys (n = 4; 31%) and environmental samples (n = 14; 74%), were CC22-MRSA-IV. Most (n = 16) of them carried both, the PVL locus and toxic shock toxin gene (tst1), an unusual combination which is the same as in previously characterized strain from Nepalese macaques and pigs. The five human isolates also belonged to that strain type. Eight monkey MRSA isolates were CC361-MRSA-IV. One MRSA from a monkey and one from an environmental sample, were CC88-MRSA-V. Other environmental MRSA included one each, CC121-MRSA-VT, and CC772 -MRSA-V. Two were CC779-MRSA-VT, potentially a novel clone. All MRSA carried the blaZ gene. The aacA–aphD, dfrA, and erm (C) genes were very common in isolates from all sources. One macaque MRSA carried the resistance genes aphA3 and sat, neither previously identified in primate MRSA isolates. This current study suggests that humans could be a potential source of the MRSA in the macaques/environment and transmission may be linked to humans feeding the primates and/or living in close proximity to each other.This study looked at 227 saliva samples from Rhesus macaques (Macaca mulatta) and 218 samples from the surrounding environments. From these samples, MRSA isolates were collected from Rhesus saliva samples (n = 13) and environmental samples (n = 19) near temple areas in Kathmandu, Nepal. For comparison, selected MRSA isolates (n = 5) were obtained from patients with wound infections from a Kathmandu hospital. All isolates were characterized using Abbott StaphyType® DNA microarrays. Eighteen isolates (62%) from monkeys (n = 4; 31%) and environmental samples (n = 14; 74%), were CC22-MRSA-IV. Most (n = 16) of them carried both, the PVL locus and toxic shock toxin gene (tst1), an unusual combination which is the same as in previously characterized strain from Nepalese macaques and pigs. The five human isolates also belonged to that strain type. Eight monkey MRSA isolates were CC361-MRSA-IV. One MRSA from a monkey and one from an environmental sample, were CC88-MRSA-V. Other environmental MRSA included one each, CC121-MRSA-VT, and CC772 -MRSA-V. Two were CC779-MRSA-VT, potentially a novel clone. All MRSA carried the blaZ gene. The aacA–aphD, dfrA, and erm (C) genes were very common in isolates from all sources. One macaque MRSA carried the resistance genes aphA3 and sat, neither previously identified in primate MRSA isolates. This current study suggests that humans could be a potential source of the MRSA in the macaques/environment and transmission may be linked to humans feeding the primates and/or living in close proximity to each other.

Loading...
Thumbnail Image
Item

Monoclonal Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse and Human Stem Cell Antigen Prominin-1 (CD133)

2016, Thamm, Kristina, Graupner, Sylvi, Werner, Carsten, Huttner, Wieland B., Corbeil, Denis, Nabi, Ivan R

The pentaspan membrane glycoprotein prominin-1 (CD133) is widely used in medicine as a cell surface marker of stem and cancer stem cells. It has opened new avenues in stem cell-based regenerative therapy and oncology. This molecule is largely used with human samples or the mouse model, and consequently most biological tools including antibodies are directed against human and murine prominin-1. Although the general structure of prominin-1 including its membrane topology is conserved throughout the animal kingdom, its primary sequence is poorly conserved. Thus, it is unclear if anti-human and -mouse prominin-1 antibodies cross-react with their orthologs in other species, especially dog. Answering this issue is imperative in light of the growing number of studies using canine prominin-1 as an antigenic marker. Here, we address this issue by cloning the canine prominin-1 and use its overexpression as a green fluorescent protein fusion protein in Madin-Darby canine kidney cells to determine its immunoreactivity with antibodies against human or mouse prominin-1. We used immunocytochemistry, flow cytometry and immunoblotting techniques and surprisingly found no cross-species immunoreactivity. These results raise some caution in data interpretation when anti-prominin-1 antibodies are used in interspecies studies.

Loading...
Thumbnail Image
Item

Effects of new beta-type Ti-40Nb implant materials, brain-derived neurotrophic factor, acetylcholine and nicotine on human mesenchymal stem cells of osteoporotic and non osteoporotic donors

2018, Kauschke, V., Gebert, A., Calin, M., Eckert, J., Scheich, S., Heiss, C., Lips, K.S.

Introduction Treatment of osteoporotic fractures is still challenging and an urgent need exists for new materials, better adapted to osteoporotic bone by adjusted Young’s modulus, appropriate surface modification and pharmaceuticals. Materials and methods Titanium-40-niobium alloys, mechanically ground or additionally etched and titanium-6-alu-minium-4-vanadium were analyzed in combination with brain-derived neurotrophic factor, acetylcholine and nicotine to determine their effects on human mesenchymal stem cells in vitro over 21 days using lactate dehydrogenase and alkaline phosphatase assays, live cell imaging and immunofluorescence microscopy. Results Cell number of human mesenchymal stem cells of osteoporotic donors was increased after 14 d in presence of ground titanium-40-niobium or titanium-6-aluminium-4-vanadium, together with brain-derived neurotrophic factor. Cell number of human mesenchymal stem cells of non osteoporotic donors increased after 21 d in presence of titanium-6-aluminium-4-vanadium without pharmaceuticals. No significant increase was measured for ground or etched titanium-40-niobium after 21 d. Osteoblast differentiation of osteoporotic donors was significantly higher than in non osteoporotic donors after 21 d in presence of etched, ground titanium-40-niobium or titanium-6-aluminium-4-vanadium accompanied by all pharmaceuticals tested. In presence of all alloys tested brain-derived neurotrophic factor, acetylcholine and nicotine increased differentiation of cells of osteoporotic donors and accelerated it in non osteoporotic donors. Conclusion We conclude that ground titanium-40-niobium and brain-derived neurotrophic factor might be most suitable for subsequent in vivo testing.

Loading...
Thumbnail Image
Item

Critical appraisal concerning “Wearable cardioverter defibrillators for the prevention of sudden cardiac arrest: A health technology assessment and patient focus group study”

2018, Sperzel, Johannes, Staudacher, Ingo, Goeing, Olaf, Stockburger, Martin, Meyer, Thorsten, Oliveira Gonçalves, Ana Sofia, Sydow, Hanna, Schoenfelder, Tonio, Amelung, Volker Eric

[no abstract available]

Loading...
Thumbnail Image
Item

Phenotypic, Morphological and Adhesive Differences of Human Hematopoietic Progenitor Cells Cultured on Murine versus Human Mesenchymal Stromal Cells

2015, Reichert, Doreen, Friedrichs, Jens, Ritter, Steffi, Käubler, Theresa, Werner, Carsten, Bornhäuser, Martin, Corbeil, Denis

Xenogenic transplantation models have been developed to study human hematopoiesis in immunocompromised murine recipients. They still have limitations and therefore it is important to delineate all players within the bone marrow that could account for species-specific differences. Here, we evaluated the proliferative capacity, morphological and physical characteristics of human CD34+ hematopoietic stem and progenitor cells (HSPCs) after co-culture on murine or human bone marrow-derived mesenchymal stromal cells (MSCs). After seven days, human CD34+CD133– HSPCs expanded to similar extents on both feeder layers while cellular subsets comprising primitive CD34+CD133+ and CD133+CD34– phenotypes are reduced fivefold on murine MSCs. The number of migrating HSPCs was also reduced on murine cells suggesting that MSC adhesion influences cellular polarization of HSPC. We used atomic force microscopy-based single-cell force spectroscopy to quantify their adhesive interactions. We found threefold higher detachment forces of human HSPCs from murine MSCs compared to human ones. This difference is related to the N-cadherin expression level on murine MSCs since its knockdown abolished their differential adhesion properties with human HSPCs. Our observations highlight phenotypic, morphological and adhesive differences of human HSPCs when cultured on murine or human MSCs, which raise some caution in data interpretation when xenogenic transplantation models are used.

Loading...
Thumbnail Image
Item

Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages

2014, Pondman, K.M., Sobik, M., Nayak, A., Tsolaki, A.G., Jäkel, A., Flahaut, E., Hampel, S., ten Haken, B., Sim, R.B., Kishore, U.

Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. From the Clinical Editor: This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response.

Loading...
Thumbnail Image
Item

Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3

2019, Zhang, Y., Holder, T., Ishizuka, H., de Juan, F., Nagaosa, N., Felser, C., Yan, B.

The bulk photovoltaic effect (BPVE) rectifies light into the dc current in a single-phase material and attracts the interest to design high-efficiency solar cells beyond the pn junction paradigm. Because it is a hot electron effect, the BPVE surpasses the thermodynamic Shockley–Queisser limit to generate above-band-gap photovoltage. While the guiding principle for BPVE materials is to break the crystal centrosymmetry, here we propose a magnetic photogalvanic effect (MPGE) that introduces the magnetism as a key ingredient and induces a giant BPVE. The MPGE emerges from the magnetism-induced asymmetry of the carrier velocity in the band structure. We demonstrate the MPGE in a layered magnetic insulator CrI3, with much larger photoconductivity than any previously reported results. The photocurrent can be reversed and switched by controllable magnetic transitions. Our work paves a pathway to search for magnetic photovoltaic materials and to design switchable devices combining magnetic, electronic, and optical functionalities.

Loading...
Thumbnail Image
Item

A human development framework for CO 2 reductions

2011, Costa, L., Rybski, D., Kropp, J.P.

Although developing countries are called to participate in CO 2 emission reduction efforts to avoid dangerous climate change, the implications of proposed reduction schemes in human development standards of developing countries remain a matter of debate. We show the existence of a positive and time-dependent correlation between the Human Development Index (HDI) and per capita CO 2 emissions from fossil fuel combustion. Employing this empirical relation, extrapolating the HDI, and using three population scenarios, the cumulative CO 2 emissions necessary for developing countries to achieve particular HDI thresholds are assessed following a Development As Usual approach (DAU). If current demographic and development trends are maintained, we estimate that by 2050 around 85% of the world's population will live in countries with high HDI (above 0.8). In particular, 300 Gt of cumulative CO 2 emissions between 2000 and 2050 are estimated to be necessary for the development of 104 developing countries in the year 2000. This value represents between 20 % to 30 % of previously calculated CO 2 budgets limiting global warming to 2°C. These constraints and results are incorporated into a CO 2 reduction framework involving four domains of climate action for individual countries. The framework reserves a fair emission path for developing countries to proceed with their development by indexing country-dependent reduction rates proportional to the HDI in order to preserve the 2°C target after a particular development threshold is reached. For example, in each time step of five years, countries with an HDI of 0.85 would need to reduce their per capita emissions by approx. 17% and countries with an HDI of 0.9 by 33 %. Under this approach, global cumulative emissions by 2050 are estimated to range from 850 up to 1100 Gt of CO 2. These values are within the uncertainty range of emissions to limit global temperatures to 2°C.