Search Results

Now showing 1 - 10 of 43
  • Item
    Carbon onion / sulfur hybrid cathodes via inverse vulcanization for lithium sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Srimuk, Pattarachai; Raju, Kumar; Tolosa, Aura; Fleischmann, Simon; Zeiger, Marco; Ozoemena, Kenneth I.; Borchardt, Lars; Presser, Volker
    A sulfur–1,3-diisopropenylbenzene copolymer was synthesized by ring-opening radical polymerization and hybridized with carbon onions at different loading levels. The carbon onion mixing was assisted by shear in a two-roll mill to capitalize on the softened state of the copolymer. The sulfur copolymer and the hybrids were thoroughly characterized in structure and chemical composition, and finally tested by electrochemical benchmarking. An enhancement of specific capacity was observed over 140 cycles at higher content of carbon onions in the hybrid electrodes. The copolymer hybrids demonstrate a maximum initial specific capacity of 1150 mA h gsulfur−1 (850 mA h gelectrode−1) and a low decay of capacity to reach 790 mA h gsulfur−1 (585 mA h gelectrode−1) after 140 charge/discharge cycles. All carbon onion/sulfur copolymer hybrid electrodes yielded high chemical stability, stable electrochemical performance superior to conventional melt-infiltrated reference samples having similar sulfur and carbon onion content. The amount of carbon onions embedded in the sulfur copolymer has a strong influence on the specific capacity, as they effectively stabilize the sulfur copolymer and sterically hinder the recombination of sulfur species to the S8 configuration.
  • Item
    Analysis of fatty acids and triacylglycerides by Pd nanoparticle-assisted laser desorption/ionization mass spectrometry
    (Cambridge : Royal Society of Chemistry, 2015) Silina, Yuliya E.; Fink-Straube, Claudia; Hayen, Heiko; Volmer, Dietrich A.
    In this study, we propose a simple and rapid technique for characterization of free fatty acids and triacylglycerides (TAG) based on palladium nanoparticular (Pd-NP) surface-assisted laser desorption/ionization (SALDI) mass spectrometry (MS). The implemented Pd-NP material allowed detection of free fatty acids and TAGs exclusively as [M + K]+ ions in positive ion mode. Under negative ionization conditions, unusual trimetric structures were generated for free fatty acids, while TAGs underwent irreproducible degradation reactions. Importantly, the mass spectra obtained from Pd-NP targets in positive ion mode were very clean without interferences from matrix-derived ions in the low m/z range and readily enabled the detection of intact TAGs in vegetable oils without major fragmentation reactions as compared to conventional MALDI-MS, requiring only a minimal amount of sample preparation.
  • Item
    Direction specific adhesion induced by subsurface liquid filled microchannels
    (Cambridge : Royal Society of Chemistry, 2012) Majumder, Abhijit; Mondal, Subrata; Tiwari, Anurag Kumar; Ghatak, Animangsu; Sharma, Ashutosh
    While directional effects in adhesion and locomotion have in general been generated by creating symmetry breaking topographic features on the surface of a soft bodied object, here we present a novel method for imparting this effect to thin adhesive layers by embedding liquid filled microchannels arranged in pairs with specific intra and inter pair distances. The adhesive exhibits uniform adhesion in classical peel tests when both the channels are filled with either air or a wetting liquid. But the asymmetric effect shows up when only one of the channels in the pair is filled with the liquid. The liquid alters the surface tension of the inner wall of the channel, which results in bulging deformation of the thin skin of the adhesive over the channel. The bulging however remains asymmetric, the extent of asymmetry depending on the intra-pair spacing between the channels. Besides the bulging effect, filling in one channel of a pair with liquid also leads to an asymmetric variation in its modulus. As a result, when an adherent is peeled off the adhesive from two opposite directions, significantly different adhesion strengths result. A similar directional effect also results when channels of two different diameters are used in the pair, thus opening up the possibility of generating several different adhesion strengths simply by altering the geometric features of the embedded microstructure and its filling status. We show also that for both channels in a pair filled with liquid, the adhesion strength increases significantly, by over 60 times of what is achieved for a smooth, featureless, adhesive layer.
  • Item
    On the behaviour of nanoparticles in oil-in-water emulsions with different surfactants
    (Cambridge : Royal Society of Chemistry, 2014) Lacava, Johann; Ouali, Ahmed-Amine; Raillard, Brice; Kraus, Tobias
    The distribution of narrowly dispersed gold nanoparticles in hexane-in-water emulsions was studied for different surfactants. Good surfactants such as SDS and Triton X-100 block the oil-water interfaces and confine particles in the droplet. Other surfactants (Tween 85 and Span 20) form synergistic mixtures with the nanoparticles at the interfaces that lower the surface tension more than any component. Supraparticles with fully defined particle distribution form in the droplets only for surfactants that block the interface. Other surfactants promote the formation of fcc agglomerates. Nanoparticles in emulsions behave markedly different from microparticles-their structure formation is governed by free energy minimization, while microparticles are dominated by kinetics.
  • Item
    Carbon onion–sulfur hybrid cathodes for lithium–sulfur batteries
    (Cambridge : Royal Society of Chemistry, 2017) Choudhury, Soumyadip; Zeiger, Marco; Massuti-Ballester, Pau; Fleischmann, Simon; Formanek, Petr; Borchardt, Lars; Presser, Volker
    In this study, we explore carbon onions (diameter below 10 nm), for the first time, as a substrate material for lithium sulfur cathodes. We introduce several scalable synthesis routes to fabricate carbon onion–sulfur hybrids by adopting in situ and melt diffusion strategies with sulfur fractions up to 68 mass%. The conducting skeleton of agglomerated carbon onions proved to be responsible for keeping active sulfur always in close vicinity to the conducting matrix. Therefore, the hybrids are found to be efficient cathodes for Li–S batteries, yielding 97–98% Coulombic efficiency over 150 cycles with a slow fading of the specific capacity (ca. 660 mA h g−1 after 150 cycles) in long term cycle test and rate capability experiments.
  • Item
    Surface-assisted laser desorption/ionization mass spectrometry using ordered silicon nanopillar arrays
    (Cambridge : Royal Society of Chemistry, 2014) Alhmoud, Hashim Z.; Guinan, Taryn M.; Elnathan, Roey; Kobus, Hilton; Voelcker, Nicolas H.
    Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is ideally suited for the high-throughput analysis of small molecules in bodily fluids (e.g. saliva, urine, and blood plasma). A key application for this technique is the testing of drug consumption in the context of workplace, roadside, athlete sports and anti-addictive drug compliance. Here, we show that vertically-aligned ordered silicon nanopillar (SiNP) arrays fabricated using nanosphere lithography followed by metal-assisted chemical etching (MACE) are suitable substrates for the SALDI-MS detection of methadone and small peptides. Porosity, length and diameter are fabrication parameters that we have explored here in order to optimize analytical performance. We demonstrate the quantitative analysis of methadone in MilliQ water down to 32 ng mL-1. Finally, the capability of SiNP arrays to facilitate the detection of methadone in clinical samples is also demonstrated.
  • Item
    A novel precursor system and its application to produce tin doped indium oxide
    (Cambridge : Royal Society of Chemistry, 2011) Veith, Michael; Bubel, Carsten; Zimmer, Michael
    A new type of precursor has been developed by molecular design and synthesised to produce tin doped indium oxide (ITO). The precursor consists of a newly developed bimetallic indium tin alkoxide, Me2In(OtBu)3Sn (Me = CH3, OtBu = OC(CH3)3), which is in equilibrium with an excess of Me2In(OtBu). This quasi single-source precursor is applied in a sol–gel process to produce powders and coatings of ITO using a one-step heat treatment process under an inert atmosphere. The main advantage of this system is the simple heat treatment that leads to the disproportionation of the bivalent Sn(II) precursor into Sn(IV) and metallic tin, resulting in an overall reduced state of the metal in the final tin doped indium oxide (ITO) material, hence avoiding the usually necessary reduction step. Solid state 119Sn-NMR measurements of powder samples confirm the appearance of Sn(II) in an amorphous gel state and of metallic tin after annealing under nitrogen. The corresponding preparation of ITO coatings by spin coating on glass leads to transparent conductive layers with a high transmittance of visible light and a low electrical resistivity without the necessity of a reduction step.
  • Item
    Novel single-source precursors for the fabrication of PbTiO3, PbZrO3 and Pb(Zr1-x Tix)O3 thin-films by chemical vapor deposition
    (Cambridge : Royal Society of Chemistry, 2011) Veith, Michael; Bender, Michael; Lehnert, Tobias; Zimmer, Michael; Jakob, Anette
    Lead titanate, lead zirconate, and lead zirconate titanate (PZT) films in the sub-μm-range were produced at temperatures around 400 °C using novel single-source precursors in a classical thermal CVD process. The design of two bimetallic alkoxide compounds, a lead titanate and a lead zirconate source with almost identical physical properties and complement miscibility, resulted in a new quasi-single-source PZT precursor, an azeotropic mixture that evaporates at 30 °C and at a pressure of 4 × 10−1 mbar. After thermal treatment at 650 °C, transparent (100)-oriented PZT films with remnant polarization of 20 μC cm−2 and a coercive field strength of 20 V μm−1 were achieved. An additional lead source is not required.
  • Item
    Comment on "Synthesis, characterization and growth mechanism of flower-like vanadium carbide hierarchical nanocrystals"
    (Cambridge : Royal Society of Chemistry, 2012) Presser, Volker; Vakifahmetoglu, Cekdar
    This Letter is in response to a recent paper by Ma et al. (CrystEngComm, 2010, 12, 750-754) which arguably studied vanadium carbide nanostructures whereas all available evidence indicates the study of vanadium oxide. We feel that it is important to communicate to the community several inconsistencies so that the interesting material reported can be seen in the right light, especially with several groups nowadays having reported similar structures from vanadium oxide synthesis.
  • Item
    Switching adhesion and friction by light using photosensitive guest - host interactions
    (Cambridge : Royal Society of Chemistry, 2015) Blass, Johanna; Bozna, Bianca; Albrecht, Marcel; Krings, Jennifer A.; Ravoo, Bart Jan; Wenz, Gerhard; Bennewitz, Roland
    Friction and adhesion between two β-cyclodextrin functionalized surfaces can be switched reversibly by external light stimuli. The interaction between the cyclodextrin molecules attached to the tip of an atomic force microscope and a silicon wafer surface is mediated by complexation of ditopic azobenzene guest molecules. At the single molecule level, the rupture force of an individual complex is 61 ± 10 pN.