Search Results

Now showing 1 - 3 of 3
  • Item
    Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints
    (Bristol : IOP Publishing, 2013) Fader, Marianela; Gerten, Dieter; Krause, Michael; Lucht, Wolfgang; Cramer, Wolfgang
    In our globalizing world, the geographical locations of food production and consumption are becoming increasingly disconnected, which increases reliance on external resources and their trade. We quantified to what extent water and land constraints limit countries' capacities, at present and by 2050, to produce on their own territory the crop products that they currently import from other countries. Scenarios of increased crop productivity and water use, cropland expansion (excluding areas prioritized for other uses) and population change are accounted for. We found that currently 16% of the world population use the opportunities of international trade to cover their demand for agricultural products. Population change may strongly increase the number of people depending on ex situ land and water resources up to about 5.2 billion (51% of world population) in the SRES A2r scenario. International trade will thus have to intensify if population growth is not accompanied by dietary change towards less resource-intensive products, by cropland expansion, or by productivity improvements, mainly in Africa and the Middle East. Up to 1.3 billion people may be at risk of food insecurity in 2050 in present low-income economies (mainly in Africa), if their economic development does not allow them to afford productivity increases, cropland expansion and/or imports from other countries.
  • Item
    Robust relationship between yields and nitrogen inputs indicates three ways to reduce nitrogen pollution
    (Bristol : IOP Publishing, 2014) Bodirsky, Benjamin Leon; Müller, Christoph
    Historic increases in agricultural production came at the expense of substantial environmental burden through nitrogen pollution. Lassaletta et al (2014 Environ. Res. Lett. 9 105011) examine the historic relationship of crop yields and nitrogen fertilizer inputs globally and find a simple and robust relationship of declining nitrogen use efficiency with increasing nitrogen inputs. This general relationship helps to understand the dilemma between increased agricultural production and nitrogen pollution and allows identifying pathways towards more sustainable agricultural production and necessary associated policies.
  • Item
    Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios
    (Bristol : IOP Publishing, 2015) Wiebe, Keith; Lotze-Campen, Hermann; Sands, Ronald; Tabeau, Andrzej; van der Mensbrugghe, Dominique; Biewald, Anne; Bodirsky, Benjamin; Islam, Shahnila; Kavallari, Aikaterini; Mason-D'Croz, Daniel; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; van Meijl, Hans; Willenbockel, Dirk
    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and input data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. This paper extends that analysis to explore a range of plausible socioeconomic scenarios and emission pathways. Results from multiple climate and economic models are combined to examine the global and regional impacts of climate change on agricultural yields, area, production, consumption, prices and trade for coarse grains, rice, wheat, oilseeds and sugar crops to 2050. We find that climate impacts on global average yields, area, production and consumption are similar across shared socioeconomic pathways (SSP 1, 2 and 3, as we implement them based on population, income and productivity drivers), except when changes in trade policies are included. Impacts on trade and prices are higher for SSP 3 than SSP 2, and higher for SSP 2 than for SSP 1. Climate impacts for all variables are similar across low to moderate emissions pathways (RCP 4.5 and RCP 6.0), but increase for a higher emissions pathway (RCP 8.5). It is important to note that these global averages may hide regional variations. Projected reductions in agricultural yields due to climate change by 2050 are larger for some crops than those estimated for the past half century, but smaller than projected increases to 2050 due to rising demand and intrinsic productivity growth. Results illustrate the sensitivity of climate change impacts to differences in socioeconomic and emissions pathways. Yield impacts increase at high emissions levels and vary with changes in population, income and technology, but are reduced in all cases by endogenous changes in prices and other variables.