Search Results

Now showing 1 - 10 of 31
  • Item
    Modeling forest plantations for carbon uptake with the LPJmL dynamic global vegetation model
    (Göttingen : Copernicus Publ., 2019) Braakhekke, Maarten C.; Doelman, Jonathan C.; Baas, Peter; Müller, Christoph; Schaphoff, Sibyll; Stehfest, Elke; van Vuuren, Detlef P.
    We present an extension of the dynamic global vegetation model, Lund-Potsdam-Jena Managed Land (LPJmL), to simulate planted forests intended for carbon (C) sequestration. We implemented three functional types to simulate plantation trees in temperate, tropical, and boreal climates. The parameters of these functional types were optimized to fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in typical productive plantations and were derived by combining field observations and LPJmL estimates for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates compared to the TGCs, it represents substantial improvement over using natural forests to represent afforestation. Based on a simulation experiment in which we compared global natural forest versus global forest plantation, we found that forest plantations allow for much larger C uptake rates on the timescale of 100 years, with a maximum difference of a factor of 1.9, around 54 years. In subsequent simulations for an ambitious but realistic scenario in which 650Mha (14% of global managed land, 4.5% of global land surface) are converted to forest over 85 years, we found that natural forests take up 37PgC versus 48PgC for forest plantations. Comparing these results to estimations of C sequestration required to achieve the 2°C climate target, we conclude that afforestation can offer a substantial contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation strategy requires an integrated assessment which considers all relevant aspects, including costs, biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute to such an assessment by providing improved estimates of C uptake rates by forest plantations. © 2019 American Institute of Physics Inc.. All rights reserved.
  • Item
    The economically optimal warming limit of the planet
    (Göttingen : Copernicus Publ., 2019) Ueckerd, Falko; Frieler, Katja; Lange, Stefan; Wenz, Leonie; Luderer, Gunnar; Levermann, Anders
    Both climate-change damages and climate-change mitigation will incur economic costs. While the risk of severe damages increases with the level of global warming (Dell et al., 2014; IPCC, 2014b, 2018; Lenton et al., 2008), mitigating costs increase steeply with more stringent warming limits (IPCC, 2014a; Luderer et al., 2013; Rogelj et al., 2015). Here, we show that the global warming limit that minimizes this century's total economic costs of climate change lies between 1.9 and 2°C, if temperature changes continue to impact national economic growth rates as observed in the past and if instantaneous growth effects are neither compensated nor amplified by additional growth effects in the following years. The result is robust across a wide range of normative assumptions on the valuation of future welfare and inequality aversion. We combine estimates of climate-change impacts on economic growth for 186 countries (applying an empirical damage function from Burke et al., 2015) with mitigation costs derived from a state-of-the-art energy-economy-climate model with a wide range of highly resolved mitigation options (Kriegler et al., 2017; Luderer et al., 2013, 2015). Our purely economic assessment, even though it omits non-market damages, provides support for the international Paris Agreement on climate change. The political goal of limiting global warming to "well below 2 degrees" is thus also an economically optimal goal given above assumptions on adaptation and damage persistence. © 2019 Copernicus GmbH. All rights reserved.
  • Item
    Freshwater resources under success and failure of the Paris climate agreement
    (Göttingen : Copernicus Publ., 2019) Heinke, Jens; Müller, Christoph; Lannerstad, Mats; Gerten, Dieter; Lucht, Wolfgang
    Population growth will in many regions increase the pressure on water resources and likely increase the number of people affected by water scarcity. In parallel, global warming causes hydrological changes which will affect freshwater supply for human use in many regions. This study estimates the exposure of future population to severe hydrological changes relevant from a freshwater resource perspective at different levels of global mean temperature rise above pre-industrial level (ΔTglob). The analysis is complemented by an assessment of water scarcity that would occur without additional climate change due to population change alone; this is done to identify the population groups that are faced with particularly high adaptation challenges. The results are analysed in the context of success and failure of implementing the Paris Agreement to evaluate how climate mitigation can reduce the future number of people exposed to severe hydrological change. The results show that without climate mitigation efforts, in the year 2100 about 4.9 billion people in the SSP2 population scenario would more likely than not be exposed to severe hydrological change, and about 2.1 billion of them would be faced with particularly high adaptation challenges due to already prevailing water scarcity. Limiting warming to 2 °C by a successful implementation of the Paris Agreement would strongly reduce these numbers to 615 million and 290 million, respectively. At the regional scale, substantial water-related risks remain at 2 °C, with more than 12% of the population exposed to severe hydrological change and high adaptation challenges in Latin America and the Middle East and north Africa region. Constraining δTglob to 1.5 °C would limit this share to about 5% in these regions. ©2019 Author(s).
  • Item
    The effect of univariate bias adjustment on multivariate hazard estimates
    (Göttingen : Copernicus Publ., 2019) Zscheischler, Jakob; Fischer, Erich M.; Lange, Stefan
    Bias adjustment is often a necessity in estimating climate impacts because impact models usually rely on unbiased climate information, a requirement that climate model outputs rarely fulfil. Most currently used statistical bias-adjustment methods adjust each climate variable separately, even though impacts usually depend on multiple potentially dependent variables. Human heat stress, for instance, depends on temperature and relative humidity, two variables that are often strongly correlated. Whether univariate bias-adjustment methods effectively improve estimates of impacts that depend on multiple drivers is largely unknown, and the lack of long-term impact data prevents a direct comparison between model outputs and observations for many climate-related impacts. Here we use two hazard indicators, heat stress and a simple fire risk indicator, as proxies for more sophisticated impact models. We show that univariate bias-adjustment methods such as univariate quantile mapping often cannot effectively reduce biases in multivariate hazard estimates. In some cases, it even increases biases. These cases typically occur (i) when hazards depend equally strongly on more than one climatic driver, (ii) when models exhibit biases in the dependence structure of drivers and (iii) when univariate biases are relatively small. Using a perfect model approach, we further quantify the uncertainty in bias-adjusted hazard indicators due to internal variability and show how imperfect bias adjustment can amplify this uncertainty. Both issues can be addressed successfully with a statistical bias adjustment that corrects the multivariate dependence structure in addition to the marginal distributions of the climate drivers. Our results suggest that currently many modeled climate impacts are associated with uncertainties related to the choice of bias adjustment. We conclude that in cases where impacts depend on multiple dependent climate variables these uncertainties can be reduced using statistical bias-adjustment approaches that correct the variables' multivariate dependence structure. © 2019 Copernicus GmbH. All rights reserved.
  • Item
    The effect of overshooting 1.5 °C global warming on the mass loss of the Greenland ice sheet
    (Göttingen : Copernicus Publ., 2018) Rückamp, Martin; Falk, Ulrike; Frieler, Katja; Lange, Stefan; Humbert, Angelika
    Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 ∘C or even 1.5 ∘C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change under the low emission Representative Concentration Pathway (RCP) 2.6 scenario. The Ice Sheet System Model (ISSM) with higher-order approximation is used and initialized with a hybrid approach of spin-up and data assimilation. For three general circulation models (GCMs: HadGEM2-ES, IPSL-CM5A-LR, MIROC5) the projections are conducted up to 2300 with forcing fields for surface mass balance (SMB) and ice surface temperature (Ts) computed by the surface energy balance model of intermediate complexity (SEMIC). The projected sea-level rise ranges between 21–38 mm by 2100 and 36–85 mm by 2300. According to the three GCMs used, global warming will exceed 1.5 ∘C early in the 21st century. The RCP2.6 peak and decline scenario is therefore manually adjusted in another set of experiments to suppress the 1.5 ∘C overshooting effect. These scenarios show a sea-level contribution that is on average about 38 % and 31 % less by 2100 and 2300, respectively. For some experiments, the rate of mass loss in the 23rd century does not exclude a stable ice sheet in the future. This is due to a spatially integrated SMB that remains positive and reaches values similar to the present day in the latter half of the simulation period. Although the mean SMB is reduced in the warmer climate, a future steady-state ice sheet with lower surface elevation and hence volume might be possible. Our results indicate that uncertainties in the projections stem from the underlying GCM climate data used to calculate the surface mass balance. However, the RCP2.6 scenario will lead to significant changes in the GrIS, including elevation changes of up to 100 m. The sea-level contribution estimated in this study may serve as a lower bound for the RCP2.6 scenario, as the currently observed sea-level rise is not reached in any of the experiments; this is attributed to processes (e.g. ocean forcing) not yet represented by the model, but proven to play a major role in GrIS mass loss.
  • Item
    Fibre optic sensing system for monitoring of current collectors and overhead contact lines of railways
    (Göttingen : Copernicus Publ., 2017) Schröder, Kerstin; Rothhardt, Manfred; Ecke, Wolfgang; Richter, Uwe; Sonntag, André; Bartelt, Hartmut
    Fibre optic sensors are excellent tools to use for monitoring high-voltage current collectors. Because of their small cross section and electrical neutrality, they are easily integrated into the current collector strip and are well specialized for detection of high-speed load events. The conventional contact force measurement with four force sensors below the collector strips can also be simplified by using fibre optic force and acceleration sensors.
  • Item
    Granular metal-carbon nanocomposites as piezoresistive sensor films - Part 1: Experimental results and morphology
    (Göttingen : Copernicus Publ., 2018) Schultes, Günter; Schmid-Engel, Hanna; Schwebke, Silvan; Werner, Ulf
    We have produced granular films based on carbon and different transition metals by means of plasma deposition processes. Some of the films possess an increased strain sensitivity compared to metallic films. They respond to strain almost linearly with gauge factors of up to 30 if strained longitudinally, while in the transverse direction about half of the effect is still measured. In addition, the film's thermal coefficient of resistance is adjustable by the metal concentration. The influence of metal concentration was investigated for the elements Ni, Pd, Fe, Pt, W, and Cr, while the elements Co, Au, Ag, Al, Ti, and Cu were studied briefly. Only Ni and Pd have a pronounced strain sensitivity at 55- €±- €5- €at.- €% (atomic percent) of metal, among which Ni–C is far more stable. Two phases are identified by transmission electron microscopy and X-ray diffraction: metal-containing nanocolumns densely packed in a surrounding carbon phase. We differentiate three groups of metals, due to their respective affinity to carbon. It turns out that only nickel has the capability to bond and form a stable and closed encapsulation of GLC around each nanoparticle. In this structure, the electron transport is in part accomplished by tunneling processes across the basal planes of the graphitic encapsulation. Hence, we hold these tunneling processes responsible for the increased gauge factors of Ni–C composites. The other elements are unable to form graphitic encapsulations and thus do not exhibit elevated gauge factors.
  • Item
    Ultrafast imaging Raman spectroscopy of large-area samples without stepwise scanning
    (Göttingen : Copernicus Publ., 2016) Schmälzlin, Elmar; Moralejo, Benito; Bodenmüller, Daniel; Darvin, Maxim E.; Thiede, Gisela; Roth, Martin M.
    Step-by-step, time-consuming scanning of the sample is still the state-of-the-art in imaging Raman spectroscopy. Even for a few 100 image points the measurement time may add up to minutes or hours. A radical decrease in measurement time can be achieved by applying multiplex spectrographs coupled to imaging fiber bundles that are successfully used in astronomy. For optimal use of the scarce and expensive observation time at astronomical observatories, special high-performance spectrograph systems were developed. They are designed for recording thousands of spatially resolved spectra of a two-dimensional image field within one single exposure. Transferring this technology to imaging Raman spectroscopy allows a considerably faster acquisition of chemical maps. Currently, an imaging field of up to 1 cm2 can be investigated. For porcine skin the required measurement time is less than 1 min. For this reason, this technique is of particular interest for medical diagnostics, e.g., the identification of potentially cancerous abnormalities of skin tissue.
  • Item
    Granular metal-carbon nanocomposites as piezoresistive sensor films-Part 2: Modeling longitudinal and transverse strain sensitivity
    (Göttingen : Copernicus Publ., 2018) Schwebke, Silvan; Werner, Ulf; Schultes, Günter
    Granular and columnar nickel-carbon composites may exhibit large strain sensitivity, which makes them an interesting sensor material. Based on experimental results and morphological characterization of the material, we develop a model of the electron transport in the film and use it to explain its piezoresistive effect. First we describe a model for the electron transport from particle to particle. The model is then applied in Monte Carlo simulations of the resistance and strain properties of the disordered films that give a first explanation of film properties. The simulations give insights into the origin of the transverse sensitivity and show the influence of various parameters such as particle separation and geometric disorder. An important influence towards larger strain sensitivity is local strain enhancement due to different elastic moduli of metal particles and carbon matrix.
  • Item
    Paradigm change in hydrogel sensor manufacturing: From recipe-driven to specification-driven process optimization
    (Göttingen : Copernicus Publ., 2016) Windisch, M.; Eichhorn, K.-J.; Lienig, J.; Gerlach, G.; Schulze, L.
    The volume production of industrial hydrogel sensors lacks a quality-assuring manufacturing technique for thin polymer films with reproducible properties. Overcoming this problem requires a paradigm change from the current recipe-driven manufacturing process to a specification-driven one. This requires techniques to measure quality-determining hydrogel film properties as well as tools and methods for the control and optimization of the manufacturing process. In this paper we present an approach that comprehensively addresses these issues. The influence of process parameters on the hydrogel film properties and the resulting sensor characteristics have been assessed by means of batch manufacturing tests and the application of several measurement techniques. Based on these investigations, we present novel methods and a tool for the optimization of the cross-linking process step, with the latter being crucial for the sensor sensitivity. Our approach is applicable to various sensor designs with different hydrogels. It has been successfully tested with a sensor solution for surface technology based on PVA/PAA hydrogel as sensing layer and a piezoelectric thickness shear resonator as transducer. Finally, unresolved issues regarding the measurement of hydrogel film parameters are outlined for future research.